[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

919

B.Tech 2nd Semester Examination Applied Mathematics-II AS-1006

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all, selecting one question from each of the sections A, B, C & D of the question paper and all the subparts of the questions in section E. Use of non-programmable calculator is allowed.

SECTION - A

- 1. (a) Find the curvature and torsion for the curve $\vec{R}(t) = a(3t t^3)\hat{i} + 3at^2\hat{j} + a(3t + t^2)\hat{k}$
 - (b) Find the directional derivative of $\phi = xy^2 + yz^3$ at a point (2, -1, 1), in the direction of the normal to the surface x log z-y²+4=0 at (-1, 2, 1).

(10,10)

- 2. (a) If F = 2y I zJ + xK, evaluate $\int F \times dR$ along the curve $x = \cos t$, $y = \sin t$, $z = 2\cos t$ from t = 0 to $t = \frac{\pi}{2}$.
 - (b) Use divergence theorem to evaluate $\int F.dS$, where $F=x^3I + y^3J + z^3K$, and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (10,10)

919/ [P.T.O.]

SECTION - B

3. (a) Expand the function $f(x) = x\sin x$, as a Fourier series in the interval $-p < x < \pi$.

Hence deduce that
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{\pi - 2}{4}.$$

For $0 \le x \le \pi$, express $f(x) = x(\pi - x)$ into (b) half range cosine series and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{4} = \frac{\pi^4}{90}$ (10,10)

4. (a) Find the Laplace transform of the triangular wave function of period 2c given by

$$f(x) = \begin{cases} t, & 0 < t < c \\ 2c - t, & c < t < 2c \end{cases}$$

(b) Solve the integral equation

$$\int\limits_0^\infty F(x)cos\ px\ dx = \begin{cases} 1-p, & 0 \le p \le 1 \\ 0, & p > 1 \end{cases}$$

Hence deduce that $\int\limits_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}.$ (8,12)

SECTION - C

- Solve in series (by Frobenious method) the 5. (a) differential equation $4x \frac{d^2y}{dx^2} = 2 \frac{dy}{dx} + y = 0$.
 - Prove that (b)

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & \text{if } m \neq n \\ \frac{2}{2n+1}, & \text{if } m = n \end{cases}, \text{ where }$$

Pm(x) and Pn(x) are Legendre's (10,10)polynomials.

6. (a) Find the general solution of the Bessel's equation $x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}(x^2-n^2)y=0 \text{ when }$ n is not an integer.

(b) Prove that $nP_n = xP'_n - P'_{n-1}$ (12,18)

SECTION - D

- 7. (a) A bar of 20 cm long, with insulated sides, has its ends A and B maintained at 30°C and 80°C, until steady state conditions prevail. The temperatures of ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t.
 - (b) A string is stretched and fastened to two fixed points, l distant apart. Motion is started by displacing the string in the form $y = a \sin \frac{\pi x}{l}$ from which it is released from rest at t = 0. Find the displacement y(x, t) at any time t.

(10,10)

- 8. (a) Solve the following partial differential equation $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$, by method of separation of variable.
 - (b) A rectangle plate with insulated surface is 8 cm wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error. If the temperature along edge y=0 is given by $u(x, 0) = 100 \sin \frac{\pi x}{8}, 0 < x < 8$. While the two long edges x=0 and x=8 as well as the other short edge are kept at 0 C. Find temperature u(x, y) at any point in the plate.

(8,12)

919/

[P.T.O.]

SECTION - E

- 9. (1) Define scalar point and vector point functions and give physical interpretation of curl of vector point function.
 - (2) State Green's theorem and Stokes theorem.
 - (3) Define irrotational and solenoidal fields.
 - (4) Evaluate $\int_{0}^{x} \frac{\sin t}{t} dt$ using Laplace transform.
 - (5) Find the inverse Laplace transform of $\frac{s}{\left(s^2+a^2\right)^2}.$
 - (6) Define Fourier sine . Fourier cosine transforms and also inverse Fourier sine and inverse Fourier cosine transforms.
 - (7) Show that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$.
 - (8) Show that $P_{2n}(0) = (-1)^n \frac{2n!}{2^{2n}(n!)^2}$.
 - (9) Solve the equation $((\partial f / \partial x)) = 2(\partial f / \partial t) = f$, given f(x, 0) = 6exp(-3x).
 - (10) Show that wave equation $(\partial^2 u/\partial t^2) = c^2(\partial^2 u/\partial x^2) \text{ is of hyperbolic}$ nature. (2×10=20)