Signature and Name of Invigilator

1.	(Signature)
	(Name)
2.	(Signature)
	(Nama)

OMR Sheet No.:										
(To be filled by the Candidate)										
Roll No.										
	()	In fig	ures a	is per	adm	issior	card)		
Roll No										
		(In words)								

Number of Questions in this Booklet: 50

Time : $1\frac{1}{4}$ hours

PAPER - II

ENVIRONMENTAL SCIENCE [Maximum Marks: 100

Number of Pages in this Booklet: 8

Instructions for the Candidates परीक्षार्थियों के लिए निर्देश

- 1. Write your roll number in the space provided on the top of this page.
- 2. This paper consists of fifty multiple choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker seal and do not accept an open
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc where \bigcirc is the correct response.

- 5. Your responses to the items are to be indicated in the **OMR** 5. Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or 8. put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।

इस प्रश्न पत्र में पचास बहविकल्पीय प्रश्न हैं।

- परीक्षा प्रारम्भ होने पर, प्रश्न पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
 - प्रश्न पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर सील की पुस्तिका स्वीकार न करें।
 - कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न पुस्तिका पर अंकित कर दें।
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (1) (2) **●** (4) जबिक (3) सही उत्तर है।

- प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

ENVIRONMENTAL SCIENCE PAPER - II

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are **compulsory**.

1.

Which one of the following elements contributes maximum to the earth crust by weight?

	(1)	Iron	(2)	Silicon		(3)	Oxygen		(4)	Carbon
2.	The l	lowest temperatu	re is o	bserved in w	hich	layeı	of the atm	nospher	re?	(.)
	(1)	Troposphere	(2)	Stratospher	e	(3)	Mesosphe	ere	(4)	Thermosphere
3.	Whic	ch of the followin	g gase	s has the lov	vest r	eside	ence time ?	4.7	. "	90
	(1)	CO ₂	(2)	N ₂ O		(3)	CFCs	6	(4)	CH_4
4.	Whic	ch of the followin	g state	ement is inco	orrect	?	17	0	10	
	(1)	Chromium (VI)	_	•		D:	1	100	6	
	(2)	Methyl mercury				-	es .			
	(3)	Arsenic (III) is n			enic ((V)	1/			
	(4)	Cadmium is a cr	пена	ponutant	- 1		1./	9		
5.	The 1	most abundant fu	nction	al group pre	esent	in fu	lvic acid, c	ommon	ly fou	and in soils, is :
	(1)	Peptide group			(2)		oxylate gr		J	
	(3)	Phenolic group		41	(4)	Ami	no group			
6.	The s	source of Stratosp	heric	NO is:			1			
	(1)	Atmospheric N ₂		A	(2)	Trop	ospheric N	J ₂ O		
	(3)	Tropospheric No	-		(4)	-	ospheric N	_		
7.	In tr	oposphere, which	of the	, following r	rococ	seoe d	loos not co	norato	budro	wyl radical 2
7.	(1)	O(¹ D) + H ₂ O	(2)	O(³ P) + H ₂ C		(3)	HCHO+		(4)	$HNO_2 + h\nu$
-	(-)	3(2)11128	(-)	0(1):1120		(5)		,	(1)	
8.	The 1	most common for	m of l	ead present i	in pes	sticid	e is :			
((1)	Lead acetate	(2)	Lead arsena	ate	(3)	Lead azid	le	(4)	Lead telluride
9.	Cons	sider the followin	g four	statements a	about	benz	zolalpyrene	e :		
	(a)		_				1117			
	(b)	It is a polycyclic	arom	atic hydroca	rbon					
	(c)	Its molecular for								
	(d)	It has four benze		ngs						
		ose the correct co	ae :	,	(2)	(a) (b) and (a)	only		
	(1) (3)	(a) and (b) only (b), (c) and (d) o	nlv		(2) (4)		b) and (c) (b), (c) and	-		
			, 		(+)	(~)/ (~ <i>,,</i> (c) and	(4)		
D-89	915				2					Paper-II

10.		n below are two stater	nents. One labell	led as Assertion	(A) and the	e other labelled as
		on (R) : rtion (A) : Radon is a	n inert cas and it	is radioactive		
			ases are radioacti			
		ose the correct answer				
	(1)	Both (A) and (R) are of		the correct expla-	nation of (A	A).
	(2)	Both (A) and (R) are of				
	(3)	(A) is true, but (R) is f			1	- 34
	(4)	(A) is false, but (R) is	true.			6 11
						1/60.
11.	Most	of Epiphytes are exam				10 11 1
	(1)	Mutualism (2)	Coevolution	(3) Commensa	alism (4)	Parasitism
				_		0 0
12.		ation of airborne mold	-		n as :	2.2
	(1)	Bronchitis	(2)	Allergy	PA	E.
	(3)	Cardiac congestion	(4)	Eye irritation	6 10	
12	D: ala	aiaal dissandits is madial		1	4 7 1	
13.		gical diversity is mainl Latitude	y a function of :		2.1	
	(a) (b)	Longitude	1			
	(c)	Distance from sea	- 1	1/		
	` /	se the correct answer		1./	9	
	(1)	(a) only (2)	(a) and (b) only	(3) (b) and (c)	only (4)	(a), (b) and (c)
	(-)	(4) 514)	(a) three (b) thrij		0111) (1)	(2) (2) (2)
14.	The a	ability of a living system	n to be restored th	rough secondary	succession a	after a more severe
		rbance is known as :	1.00			
	(1)	Rehabilitation (2)	Resistance	(3) Resilience	(4)	Restoration
			46.0			
15.		characteristic feature of	_			-
	(1)	low rate (2)	fast rate	(3) lapse rate	(4)	intrinsic rate
1.0	C .	1 1				
16 .		ation means : Natural process of ext	inction of differen	at apacias		
4	(2)	Artificial process of ex				
1	(3)	One species splits into		•	ırally	
- ((4)	Characterisation of di		erent species nati	aruny	
- 1	(-)		rieren ap eeres			
17.	Topo	logical modelling is a v	well organized clu	ster of functions	in GIS to pi	rocess :
	(a)	Spatial data	-		_	
	(b)	Attribute data				
	(c)	Physico - chemical da	ta			
	(d)	Species richness data				
		se the correct code :				
	(1)	(a) and (b) only	(2)	(b) and (c) only	11)	
	(3)	(a), (b) and (c) only	(4)	(a), (b), (c) and (d)	
D-89	15		3			Danay II
D- 05	15		3			Paper-II

18.		ck body or form vhich by virtue (led :										
	(1)	Aquitard	(2)	Aquifuge		(3)	Aquiclude	(4)	Aquifer			
19.		many decades, g rring around the							d active volcar	noes		
	(1)	Volcanic ring	71111 01	the ruente	(2)		of fire	anca .	- 14			
	(3)	Earthquake zon	ne		(4)	U	anic hot spo	ot	. 59	ì		
20.	Inve	rsion that occurs	near E	arth's Surfa	ace is	called	l:	4	10 12	į.		
	(1)	Radiation inve			(2)		ectional inv	ersion	E			
	(3)	Subsidence inv	ersion		(4)		l - air - drair	nage invers	ion			
21.	The i	adiation flux em	nitted pe	er unit solid	l angle	e in a s	specified dir	ection by a	unit area of so	urce		
	(1)	irradiance	(2)	radiance		(3)	exitance	(4)	radiant flux			
22.	Mear	n residence time	of soil	organic ma	tter in	an e	cosystem is	mavimum i	n :			
 .	(1)	Tropical rain fo		organic ma	(2)		al forest	maximum	ur .			
	(3)	Temperate con		forest	(4)		deciduous f	orest				
	(-)				(-)		-	0.				
23.	Wors	st affected area l	y India	an Ocean T	sunan	ni of I	December 20	004 in India	ı was :			
	(1)	Andaman and	-	1.00	(2)		il Nadu					
	(3)	Andhra Prades	sh	WS	(4)	Odis	sha					
24.	Cons	sider solar insola	tion of	400 W/m² i	incide	nt on	a single sola	ar cell of are	ea 100 cm^2 . If α	only		
		of the photons o										
	~1 e	V, the short circu			ell is :			0,	-			
	(1)	1.2 A	(2)	1.5 A		(3)	1.6 A	(4)	1.8 A			
25.	For v	which of the follo	owing r	enewable r	esour	ces of	energy, sun	ı is not dire	ctly responsible	e ?		
-	(1)	Wind	(2)	Biomass		(3)	OTEC	(4)	Tidal			
. (, ,	1	V			` ,		· /				
26.	55.	rms of the calori		-			sequence :					
	(1)	Methane > hyd	0									
	(2)	Hydrogen > m										
	(3)	Methane > hyd Hydrogen > etl	_									
	(4)	Trydrogen > en	1101 /	memane /	meu	lanoi						
27.	At a	given location	the wir	nd speeds a	are pr	edom	inantly in t	he range 6	to 6.4 m/s.	Γhis		
		ion's wind powe					J	U	,			
	(1)	Fair	(2)	Good		(3)	Excellent	(4)	Outstanding			
D-89	015				4				Danas	r_II		
D -03	10			D-8915 Paper-II								

28.	Whie	ch of the followin 235 U	g nuc (2)	lides does not un 238 U	dergo (3)	fission with lov 239 Pu	v energy (4)	y (slow) neutrons? 233 U	
29.	Acco	-	stand	ards, the annua	ıl ave	rage concentrat	tion of	PM _{2.5} should not	
	(1)		(2)	$40~\mu g~m^{-3}$	(3)	$80~\mu g~m^{-3}$	(4)	$100 \ \mu g \ m^{-3}$	
30.	Whi	ch of the followin	g is a	secondary aeros	ol?			100	
	(1)	Pollens		(2)	Viru	18		-071	
	(3)	Sodium Chlorid	m Chloride (4) Ammonium Sulphate						
31.		ne colorimetric de ne colored comple						od, the absorbance	
	(1)	550 nm	(2)	650 nm	(3)		(4)	350 nm	
32.	A he	ealthy human ear	· befo	are experiencing	nain	can detect sour	id press	sure levels as high	
52.	as:	carriy maman car	, bere	re experiencing	Party	can acteer boar	ia prese	are levels as might	
	(1)	50 Pa	(2)	100 Pa	(3)	200 Pa	(4)	1000 Pa	
33.	The	resultant of two r	noise l	evels of 80 dB ar	od 50 d	dB will be about			
00.	(1)	~ 80 dB	(2)		(3)	~ 60 dB	(4)	~ 130 dB	
	()		()	41	(-)	1777	()		
34.	The	half life of radioa	ctive	iodine -131 is:					
	(1)	30 years	(2)	15 years	(3)	5 years	(4)	8 years	
35.	Whi	ch of the followir	ng bes	t describes the fu	unctio	n of the enviror	mental	management plan	
		part of the enviro	- 40						
	(1)			onmental impacts					
	(2) (3)	~ 4	70. 1	ne environmenta et proposal in det		•			
	(4)	- 170m - 1		is and auditing p		ures needed.			
4	(-)								
36.		a submitted its IN d for ?	IDCs :	related to climate	e chan	ge to the UN re	cently.	What does INDCs	
	(1)	Intended Nation	nally l	Devoted Contrib	utions				
	(2)	Intended Nation	nally 1	Determined Cont	ributi	ons			
	(3) Intended Notified Decisive Contributions								
	(4) India's Nationally Determined Contributions								
37.	Forn	nal FIA hecame at	n inte	oral part of Envir	onmer	ntal Managemen	t in Ind	ia by a Notification	
<i>57</i> .		he first time in :	тице	oral part of Ellylli		iai managemen	111 111U.	a by a rounication	
	(1)	1988	(2)	1990	(3)	1992	(4)	1994	
D 6									
D-89	D-8915 Paper-II								

	(1)	(a) only	(2)	(b) only		(3)	(b) and (c)	only	(4)	(a), (b) and (c)
20	A 170	oist oir parcal at '	04°C h	as a mivina	ratio	of 10	a non ka II	o zzint	ual ta	mnomatuma is .
39.	(1)	oist air parcel at 2 ~ 25.81°C	(2)	~ 20.68°C	rano	(3)	~ 31.25°C	is virti	(4)	~ 28.12°C
	(1)	20.01	(-)	20.00 €		(5)	01.20 C		(1)	20.12
40.	The	Vienna Conventi	on is b	pasically rela	ated to) :			- 1	N DE
	(1)	International tra		-	d spec	ies			-	
	(2)	Protection of O ₃						011		3.5
	(3)	Biodiversity cor Preservation of			nont.	.3	4.2	6	1	1
	(4)	r reservation of	Cuitui	ai environii	lent	1	17	0	10	
41.	Acco	ording to Wildlife	Prote	ection Act is	n Indi	a, wh	no is the aut	hority	to is	sue permission to
	hunt	rogue animals?			1	-	1 /	- 7		-
	(1)	Chief Minister of			(2)		f Wildlife w			
	(3)	Conservator of	Forest		(4)	Dep	uty Commis	sionei	•	
42.	Acco	ording to MOEF	(nov	v MOEFCC	not	ificat	ion of 1992	, for	labell	ling cosmetics as
	envi	ronment friendly								powder should not
	excee			41	4		2			
	(1)	20 ppm	(2)	50 ppm		(3)	100 ppm		(4)	10 ppm
43.	Whic	ch one of the follo	wing	methods co	nverts	deco	mposed liau	id or	solid	hazardous organic
		e effectively ?					II			
	(1)	Open incinerati		N. 11	(2)		ma incinera	tion		
	(3)	Sanitory landfill	8	1	(4)	Bior	emidiation			
44.	For	, hi variata samp	lo tha	correlation	coeff	iciont	is 0.25 and	it is f	ound	to be significantly
77.										the minimum size
- (e sample ?	1	O			0.05			
- 1	(1)	43	(2)	50		(3)	55		(4)	63
45 .	Whi	ch one of the follo	nuina	is non prob	ahilit	v cam	unling 2			
10.	(1)	Convenience pr	O	-	(2)	,	tified			
	(3)	Cluster)	(4)	Syste				
	A	80				-				
46.	_		nerally	used to co	ompar	e san	nple varianc	e to a	theo	retical population
	varia (1)	ince, is : F - test	(2)	Z - test		(3)	t - test		(4)	x^2 - text
	(<i>±)</i> 		(<i>∠)</i> ⊪⊪			(5)	i icsi		(+)	n tent
D-89	15				6					Paper-II

EIA is necessary because:

Choose the **correct** answer:

Development is not good for environment

There is growing interest in sustainability

Environmental impacts of development are in public interest

38.

(b)

(c)

From a random sample of 36 fish caught in a sample, the mean length (\overline{X}) and sample **47.** standard deviation (sd) were found to be 30 cm and 6 cm respectively. If at 95% confidence level *z* is 1.96, then the mean length of fish in this population is in the range :

27 < X < 33

(2) 27.5 < X < 32.5 (3) 24 < X < 36

28.04 < X < 32

48. One of the natural causes of occurrence of inland soil alkalinity is the presence of

Sodium hypochlorite

(2) Potassium nitrate

(3) Sodium chloride (4) Sodium carbonate

The Supreme Court of India directed the government to implement environmental education 49. in all educational institutions as compulsory subject in:

1976 (1)

(2)2003 1988

Organic wetland soils have: **50.**

high cation capacity

(2) high bulk density

low porosity (3)

high nutrient availability (4)

Space For Rough Work

D-8915 Paper-II