DAY and TIME		COURSE		SUBJECT
DAY-1 10.30 am to 12.30 pm SESSION: FORENOON	(Infrast	I.Tech/M.A ructure Ma ses offered VCE/UBD	nagement) CHEMICAL ENGINEERING
MAXIMUM MARKS	TOTAL D	URATION	MAXIMUM	TIME FOR ANSWERING
100	150 MIN	NUTES		120 MINUTES
MENTION YOUR PO	CET NO.	JQ	JESTION BO	OOKLET DETAILS
		VERSION	CODE	SERIAL NUMBER
		A -	1	120157

DOs:

- 1. Check whether the PGCET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. Ensure whether the circles corresponding to course and the specific branch have been shaded on the OMR answer sheet.
- 3. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.25 a.m.
- 4. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 5. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.30 a.m., till then;
 - Do not remove the paper seal / polythene bag of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORIANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.30 a.m., remove the paper seal / polythene bag of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.
- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 5. After the last Bell is rung at 12.30 pm, stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 6. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 7. After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- Only Non-programmable calculators are allowed.

Marks Distribution

PART-I : 50 QUESTIONS CARRY ONE MARK EACH (1 TO 50) PART-II : 25 QUESTIONS CARRY TWO MARKS EACH (51 TO 75)

003-A1

A-1 2

CHEMICAL ENGINEERING PART – I

Each question carries one mark.

 $(50\times1=50)$

1.	In a given system, extensive property of	f a thermodynamic system depends u	pon
	· · · · · ·	•	

- (A) Pressure & temperature
- (B) Viscosity

(C) Mass

(D) Volume

2. Enthalpy for the reaction
$$C + O_2 \rightarrow CO_2$$
 is

(A) Positive

(B) Negative

(C) Zero

(D) None of these

(A) $\left(\frac{\partial E}{\partial T}\right)_{P}$

(B) $\left(\frac{\partial H}{\partial H}\right)_{B}$

(C) $\left(\frac{\partial S}{\partial T}\right)_{P}$

(D) None of these

4. Joule - Thomson coefficient for a perfect gas is

(A) Zero

(B) Positive

(C) Negative

(D) None of these

5. For a chemical reaction occurring at equilibrium under constant temperature and pressure, the change in Gibbs free energy is

(A) Maximum

(B) Minimum

(C) Zero

(D) None of these

6	The CaC	number of degrees CO ₃ into an evacuated s	of freedom for space is	a system prepared by partially decomposing
	(A)	0	er to say the Commission (B	
	(C)	2) 3 - 1
7.	A ro	tameter is a device use	ed to measure	
	(A)	Velocity of fluid in p		
	(C)	Vortex flow	(D	-
8.	Cavit	ation is caused by	;	en e
	(A)	High velocity	(B)	Low Barometric pressure
	(C)	High pressure	(D)	
9.	For m	easuring flow by a Ve	nturimeter, it sho	ould be installed in
	(A)	Vertical line	(B)	
• ,	(C)	Horizontal line	(D)	
10.	A larg	e Reynold's number is	s indication of	
		Laminar flow	(B)	Steady flow
	(C) S	Smooth and stream line		Highly turbulent flow
11.	Mesh i	s defined as the number		
	(A) Fe	et of screen surface	(B)	Inch of screen surface
		eter of screen surface	(D)	None of these
12.	Specifi	c surface of spherical t	particles is given	by - Marian Araban Araban Araban
	(A) 6	/ Dp	(B)	2/Dρ
	(C) 4	/ Dρ	•	12 / Dp

12	For non – spherical particle, the sphericity (φ) is defined by the relation
13.	$(B) \phi_s = (D_p S_p) / V_p$
	(A) $\phi_S = V_P / (D_P S_P)$ (C) $\phi_S = 6V_P / (D_P S_P)$ (D) $\phi_S = V_P / (6D_P S_P)$
14.	Ball mill is used for (A) Crushing (C) Fine grinding (B) Coarse grinding (D) Attrition
15.	The unit of specific cake resistance is
	(A) kg/m^2 (B) m/kg (C) m/kg^2 (D) kg/m^3
16.	Dropwise condensation usually occurs on (A) Glazed surface (B) Smooth surface (C) Oil surface (D) Coated surface
17	least in (A) Parallel flow (C) Cross flow (B) Counter flow (D) Same iff all above
18	(A) an insulator (B) conductor and insulator (C) a super conductor (D) a fin
1	P. Emissivity of a body is equal to absorptivity if the body is (A) in thermal equilibrium (B) at low temperature (C) at high temperature (D) none of these

2	20. A ra	adiation shield should have		
	(A)		(1	B) Low reflectivity
	(C)	High reflectivity	•	D) None of these
2	1. The	effect of scaling in a heat exchange	anger is	
	(A) (C)	Heat transfer coefficient Insulation factors	(E	B) Fouling factors
22	()	transfer coefficient (K) and dis $K \propto D$ $K \propto D^{1.5}$	(B)	$K(D)$ are related according to film theory is $K \propto \sqrt{D}$ $K \propto D^2$
23.	(A)	inary diffusivity in gases deper Temperature Nature of components	nds upor (B) (D)	Pressure
24.25.	(A) I (C) I Ratio c (A) H	t's law is applicable to Ideal solutions Mixture of water and alcohol of the partial pressure of the var Iumidity Relative humidity	(B)	Real solutions All of these he vapour pressure of liquid is called Saturated humidity
26.	Cox cha	art is used in the design of istillation column eat exchanger	(D) (B) (D)	None of these Condensor Crystallizer

27.	The	rate	of	leaching	depends	or
-----	-----	------	----	----------	---------	----

(A) The particle size

(B) The temperature

(C) The agitation

(D) All of these

28. Schmidt number (N_{SC}) is defined as

(A) μ/D_{AB}

(B) $\mu / \rho D_{AB}$

(C) $\rho\mu/D_{AB}$

(D) $\mu D_{AB} / \rho$

29. Ficks second law of diffusion in one dimension is

- (A) $\partial C_A / \partial t = D_{AB} (\partial^2 C_A) / (\partial x^2)$
- (B) $\partial C_A / \partial t = D_{AB} (\partial C_A) / (\partial x)$

(C) $\partial C_A / \partial t = (\partial C_A) / (\partial x)$

(D) None of these

30. The rate of chemical reaction depends upon

(A) Temperature

(B) Pressure

(C) Concentration

(D) All of these

31. Space time in flow reactor is

- (A) Usually equal to the residence time
- (B) The reciprocal of the space velocity
- (C) Both (A) and (B)
- (D) None of these

32. BET apparatus is used to determine

- (A) Specific surface of porous catalyst
- (B) Pure size distribution
- (C) Pore diameter
- (D) Porosity of the catalyst bed

- 33. What is the dispersion number for a CSTR?
 - (A) 0

B) 1

(C) < 1

- (D) ∞
- 34. Which of the following explains the mechanism of catalysis?
 - (A) Activated complex theory
- (B) Collosion theory

1-15-25

- (C) Thermodynamics
- (D) None of these
- 35. Those material which improves the activity of a catalyst is called
 - (A) Carrier

(B) Promoter

(C) Inhibitor

- (D) None of these
- 36. If E is the age distribution of fluid leaving a vessel, then

(A)
$$\int_{0}^{\infty} E.dt = 0$$

$$\lim_{A \to \infty} e^{tx} \qquad \lim_{A \to \infty} (B) \qquad \int_{0}^{\infty} E.dt = 1$$

(C)
$$\int_{0}^{\infty} E.dt = \infty$$

(D)
$$\int_{0}^{\infty} E.dt = \frac{2}{\pi}$$

- 37. Characterization of a dynamic system by a transfer function can be done for
 - (A) Linear system

(B) Non – linear system

(C) Both (A) & (B)

- (D) None of these
- 38. Phase angle (ϕ) of the sinsusoidal response of first order system is given by
 - (A) $\phi = \tan h^{-1} (\omega \tau)$

(B) $\phi = \tan^{-1}(-\omega\tau)$

(C) $\phi = \tan^{-1}(\omega \tau)$

(D) $\phi = \tan h^{-1} (-\omega \tau)$

39.	With a damping coefficient m	ore than 1 the se	cond order wift be	
37.	As TI In dommed	90 45 (B)	Oscillatory	ic as
	(C) Over damped	configuration (D)	Critically damped	l e e e e e e e e e e e e e e e e e e e
40.	Routh test cannot be used to	test the stability	of a control system	containing
	(A) Controller	2 / (E).	'I Tansportation la	g Lac Services
	(C) Final control element		None of these	Maria de la Caracteria de Caracteria de la Caracteria
		(4) · · · 2		
41.	Diameter of the distillation of	column is set by		
	(A) Number of theoretical	plates work	partition grading success	entre de la companya del companya de la companya del companya de la companya de
	(B) Allowable vapour ven	City		
		and the control of		
	(C) Static submergence(D) Length of straight rec	tangular weir on	cross flow tray	
42.	(A) 0 (C) > 1	(B 81024 (E 25(m)) 3)	ion column is weak, the second water
	Break – even point is the r	•		
43	(A) Unit price		12.5 - 10.00 1 1	and the second section of the section o
	(B) Unit variable cost		2.4 2.4	
	(C) Unit price + Unit va		3	
	(D) Unit price – Unit va	riable cost		
4	4. Sucrose content in cane s	ોલ મુગ્યું ugar may be aroi	ind	Same of the second seco
7	(A) 30%	Ano ment	(B) 70%	
	(C) 80%	and it	(D) 95%	
		Space For	Rough Work	

4	5. U	Iltimate	analysis of coal o	letermines		
		A) Carl			B)	Hydrogen
	(0	C) Sulp	ohur		D)	
40	6. A	solution specific	of specific grave c gravity of A is	ity 1.0 consists 0.7, the specific	of	35% A by weight and the remaining 'B' if
	(A) 1.25				1.3
	(C)	1.35		(I))	1.2
47	. For	r the cas adiabati	e of fuel gas und ic flame tempera	lergoing combu	sti	on with air, if the air/fuel ratio is increased,
	(A)	Increa	ases	(B)	Decreases
	(C)	Deper	nds on fuel type		-	None of these
48.	An com	aqueous	s solution of 2.4.	5% by weight rmality is	H ₂	SO ₄ has a specific gravity of 1.011. The
	(A)	0.25		(B)	k.	0.2528
	(C)	0.5		(D)		0.5055
49.	Knuc	dson dif	fusion is directly	proportional to		
	(A)	T		(B)		$\sqrt{ ext{T}}$
	(C)	1∕√T		(D)	,	[2]
50.	Rate	of autoc	atalytic chemical	reaction is a fu	nc	tion of
	(A)		ature only	(B)		ressure only
	(C)		sition only	(D)		all of these
				Space For Rou	gh	Work

51. The change in free energy when a real gas undergoes an isothermal change in state is

- (A) $\Delta G = RT \ln (V_2/V_1)$
- (B) $\Delta G = RT \ln (P_2/P_1)$

- (C) $\Delta G = RT \ln (f_2/f_1)$
- (D) $\Delta G = RT \ln (\gamma_2/\gamma_1)$

52. The equilibrium constant for the reaction $N_2 + 3H_2 \rightarrow 2$ NH₃ is 0.1084. Under the same conditions, the equilibrium constant for the reaction 1/2 N₂ + 3/2 H₂ \leftrightarrow NH₃ is

(A) 0.1084

(B) 0.3292

(C) 0.0118

(D) 0.0542

53. What is the change in entropy when 1 gm of ice at 0°C is converted to steam at 100°C? C_p of water is 1 cal/g, $\lambda_{vap} = 540$ cal/g

(A) 0.553 cal/g K

(B) 1.053 cal/g K

(C) 2.053 cal/g K

(D) None of these

54. Critical speed of ball mill is equal to

(A) 1/(D-d)

(B) $1/\sqrt{D-d}$

(C) $76.65 / \sqrt{D-d}$

(D) $76.75 / \sqrt{D-d}$

55. Percentage of drum submerged in slurry in case of rotary drum filter is

(A) 3

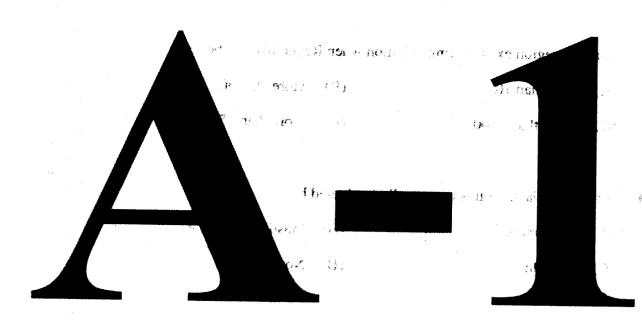
(B) 30

(C) 85

(D) None of these

50	6. A	s roj	teel ball of mass pped into 1 kg wa	1 kg and specter at 20 °C.	cific hea The fina	t 0.4 k l steady	J/kg is y state t	at a ter tempera	nperatur	e of 60 vater is	°C. It is
			23.5 °C		(E						
	((C)	35 °C		(E	9) 40	°C		• *		
57.		or ssi	a current wire of pation occurs who	20 mm diam en thickness o	eter export	osed to ion (K	o air (h = 0.5 V	= 20 V V/mK)	V/m² K) is	, maxim	um heat
	(A	.)	20 mm		(B)	25 1	mm				
	(C)	35 mm		(D)	10 r	mm				
58.	26	°C	certain heat exchange. The hot fluid leaves at 55 °C.	anger, both the distance of the effective	e fluids °C and eness of	have ic leaves heat ex	dentical at 47 change	l mass i °C and er is	low rat	e – speci d fluid e	fic heat
	(A))	0.16		(B)	0.58					
	(C)		0.72		(D)	1.0				z	
59.	NT	U i	is calculated by th	e equation							
	(A)	1	UA/C _{min}		(B)	UA (C _{min}		. 4		
	(C)	•	C _{min} / UA		(D)	C _{min}	/ C _{max}	•			
60.	Four	rie	r's law of heat co	nduction give	s the hea	t flow:	for				*
	(A)	C	One dimensional f	low only	(B)	Two	dimensi	ional flo	w only		
	(C)	I	rregular surfaces	only	(D)	All su			-		
				Space 1	For Rou	gh Wor	rk				

	(A)	listilla 0.5 d	& 0.75					(B)	0.25 & 0.5	
	• .		& 0.9				-	(D)	0.75 & 0.75	
62.	Matc	h list	I with	list II	and s	elect	the co	orrect a	nswer from the	codes given below the lists:
			LIS	T – I		i (j)			LIST – II	
	(a)	Rota	ary ato	mizer				(1)	Kinetic energy	
	(b)	Rela	ative v	olatilit	y			(2)	Centrifugal pur	mp
	(c)	Pne	umatic	nozzl	e			(3)	Distillation	
	(d)	Sele	ectivity	7				(4)	Liquid - liquid	l extraction
		(a)	(b)	(c)	' (d)					
	(A)	2	3	1	4					
	(B)	2	-1	3 .	4					
	(C)	1	2	3	4					
	(D)	4	3	1	2					
						_		* .		t at a standard management
63.	Acc to	ordin	g to si	ırface ·	– ren	ewal	theor	y, mas	s transier coeiiic	cient is directly proportional
	(A)	$\mathbf{D}_{\mathbf{A}^{1}}$	В					(B)	D^2_{AB}	2*
	(C)	$\mathbf{D}^{1.}$	5 AB		* : * :			(D)	$\mathbf{D^{0.5}}_{\mathbf{AB}}$	
64.	The	psyc	homet	ric rati	o is d	efine	d as	41.1 4.11.		
	(A)	$\mathbf{h}_{\mathbf{G}}$	/ Ky					(B)	K_y / h_G	
	(C)	hc	/ K _y C	· · · ·				(D)	N_{SC}/N_{pr}	


65.	Rota	ary driers are operated with the hole	dups c	of material in the range of
	(A)	0.20 to 0.30	(B)	
	(C)	0.40 to 0.50	(D)	0.05 to 0.15
66.	If r _A	$c = - d C_A / dt = 0.2 \text{ mol/lit-sec whe}$ = 10 mol / lit ?	en C _A	= 1 mol/lit, what is the rate of reaction when
	(A)	2 mol/lit.sec	(B)	0.2 mol (lit.sec)
		20 mol/sec		0.02 mol/lit.sec
67.		rate equation for an autocatalytic re		
	A + 3	$R \xrightarrow{k_1} R + R \text{ is } -r_A = d C_A/dt = R$	C CA C	C _R plot of (-r _A) versus C _A gives a
	(A)		(B)	Parabola
	(C)	Hyperbola	(D)	Straight line with zero slope
68.	of co with	on irreversible elementary first order concentration of component R versus slope of $\mathbf{k}_1 + \mathbf{k}_2$	s conc	tion in parallel A $\xrightarrow{k_1}$ R; A $\xrightarrow{k_2}$ S. A plot centration of components gives a straight line
				$\mathbf{k}_1 - \mathbf{k}_2$
	(C)	k ₂ / k ₁	(D)	k_1/k_2
69.	The t	ransfer function of a PD controller	is	
	(A)	$K_C / \tau_D S$	(B)	$K_{C}(1+1/\tau_{D}S)$
	(C) I	$K_{C} (1 + \tau_{D}S)$	(D)	$K_{\rm C} (1 + \tau_{\rm D}/S)$
70.	At the	e corner frequency, amplitude rati	io (AF	R) for the sinusoidal response of first order
	(A)	$1/\sqrt{2}$	(B)	b
	(C)	$\sqrt{2}$	(D)	1√5
		Space Fo	r Rou	gh Work
•				

	` '	Over shoot = decay ratio	(B)	Over shoot = $(\text{decay ratio})^2$
	(C) (Over shoot = $\sqrt{\text{decay ratio}}$	(D)	Over shoot = $(\text{decay ratio})^3$
72.	Accu	racy is specified as ± 0.5% of tru	ie value.	At 5% of full scale, error of the
	instru	ıment will be		
	(A)	(±) 0.025%	(B)	(±) 0.5%
	(C)	(±) 2.5%	(D)	(±) 25%
73.	Lam	inar region exists during agitation	n when F	Reynold's number is
	(A)	Less than 10	(B)	More than 50
	(C)	More than 1000	(D)	More than 2500.
		1 - 18		
74.	Mix	ing of plastic solids is generally i	incilitate	d by
	(A)	Dispersion	(B)	Mastication .
	(C)	Kneading	(D)	Nome of these
75.	Poly	rtetrafluroethylene (PTFE) is kno	wn as	
	(A)	Teflon	(B)	Decron
	(C)	Perspex	(D)	Nylon
		· -		ugh Work

71. In under damped second – order response

And the state of t

and the second of the second o

to two and a APP to proper to the second of the

The second second

Programme Commencer

The state of the s

भ अपर्व तंत्रुकामे अवसे स्वरत्ति

The second secon