M.Phil./Ph.D. (Mathematics) Entrance Examination 2016-17

Max Time: 2 hours Max Marks: 150

Instructions: There are 50 questions. Every question has four choices of which exactly one is correct. For correct answer, 3 marks will be given. For wrong answer, 1 mark will be deducted. Scientific calculators are allowed.

In the following \mathbb{R} , \mathbb{N} , \mathbb{Q} , \mathbb{Z} and \mathbb{C} denote the set of all real numbers, natural numbers, rational numbers, integers and complex numbers respectively.

- (1) We know that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, for |x| < 1. The series $\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n$ converges to
 - A) 1.
- B) 2.
- C) 0.
- D) $\frac{1}{2}$.
- (2) Which of the following statements is correct?
 - A) Intersection of two connected sets in a topological space is connected.
 - B) Countable union of compact sets in a topological space is compact.
 - C) Closure of a compact set in a topological space is compact.
 - D) None of A), B), C) is correct.
- (3) An uncountable set with co-countable topology is
 - A) second countable.
- B) first countable but not second countable.
- C) not first countable.
- D) separable.
- (4) Which of the following statements is true?
 - A) A convergent net in a topological space has a unique limit.
 - B) Only eventually constant nets are convergent in an infinite space with cofinite topology.
 - C) If X and Y are topological spaces and $f: X \to Y$ be a function. f is continuous on X if and only if $f(\lim_n x_n) = \lim_n f(x_n)$ for every convergent sequence (x_n) in X.
 - D) None of A), B), C) is true.
- (5) Let τ be the topology on \mathbb{R} generated by the basis consisting of all open intervals (a,b) and the sets $(a,b) \sim A$, where $A = \{1/n : n \in \mathbb{N}\}$. Then
 - A) τ is not comparable with lower limit topology on \mathbb{R} .
 - B) τ is strictly coarser than the usual topology on \mathbb{R} .
 - C) τ is not comparable with co-finite topology on \mathbb{R} .
 - D) τ is strictly finer than upper limit topology on \mathbb{R} .

- (6) The value of the integral $\int_0^\infty \frac{\cos x}{(1+x^2)^2} dx$ is
 - A) π/e .
- B) $\pi/2e$.
- C) $2\pi e$.
- D) $2\pi/e$.
- (7) If $\sum_{n=0}^{\infty} a_n(z-1)^n$ is the Laurent series expansion of $g(z) = \frac{z^2}{(z-1)^2}$, then a_{-1} is
 - A) 1.
- B) -1.
- C) 2.
- D) $\frac{3}{2}$.
- (8) If $\sum_{n=0}^{\infty} a_{2n}z^{2n}$ is the power series of $\frac{z^2}{(1-z^2)^2}$, then a_2 is given by
 - A) 2.
- B) 3.
- C) 6.
- D) 4.
- (9) Let $f(z)=z^2-2z$ and $\gamma(t)=(\cos t,\sin t),\ 0\leq t\leq \pi.$ Then $\int_{\gamma}f(z)dz$ is equal to
 - A) -2/3.
- B) 1/3.
- C) -1/3.
 - D) 5/3.
- (10) Let H be a Hilbert space and $\{e_k: k \in \mathbb{N}\}$ an orthonormal set in H. Which of the following is true?

 - A) $\sum_{k} |\langle x, e_k \rangle|^2 = ||x||^2$ for every $x \in H$. B) $S = \{e_k : k \in \mathbb{N}\}$ is a Hamel basis for H if S is total in H.
 - C) $\langle x, e_k \rangle = 0$ for all k then x = 0.
 - D) H is separable if $\{e_k : k \in \mathbb{N}\}$ is total in H.
- (11) For normed spaces X and Y, let $T: X \to Y$ be a bounded linear operator and dim (Range T) $< \infty$. Which of the following is not true?
 - A) Ker T is closed in X.
 - B) X/Ker T is finite dimensional.
 - C) dim (X/Ker T) > dim (Range T).
 - D) Range T is closed.
- (12) Let $X = C_{00}$, the linear space of all complex sequences with only a finite number of non-zero entries. For $x=(x_n), y=(y_n)\in X$, define an inner product on X by

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}$$

and $f: X \to \mathbb{C}$ be defined by

$$f(x) = \sum_{n=1}^{\infty} \frac{x_n}{n}.$$

Then which of the following is not true?

- A) f is bounded with $||f|| \le \pi$.
- B) there exists $y \in X$ such that $f(x) = \langle x, y \rangle$ for all $x \in X$.
- C) Ker f is a proper closed subspace of X.
- D) $(\text{Ker f})^{\perp} = \{0\}.$
- (13) Let $A = \left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ and $B = [-1, 1] \setminus A$. If $f: [-1, 1] \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} 1, & \text{if } x \in A; \\ -1, & \text{if } x \in B, \end{cases}$$

then f is

- A) Riemann integrable.
- B) Lebesgue integrable but not Riemann integrable.
- C) not Lebesgue integrable.
- D) not measurable.
- (14) Let $A = \{(x, 0) : x \in \mathbb{R}\}$ and $B = \{(x, e^{-x}) : x \in \mathbb{R}\}$ be subsets of \mathbb{R}^2 with Euclidean metric. If d(A, B) denotes the distance between A and B, then A and B are
 - A) disjoint closed sets in \mathbb{R}^2 with d(A, B) > 0.
 - B) disjoint closed sets in \mathbb{R}^2 with d(A, B) = 0.
 - C) closed in \mathbb{R}^2 , d(A, B) = 0, but not disjoint.
 - D) disjoint, d(A, B) = 0, but not closed in \mathbb{R}^2 .
- (15) Let V be a Lebesgue non-measurable subset of \mathbb{R} and $p \in \mathbb{R}$ be fixed. Define a function $f_p : \mathbb{R} \to \mathbb{R}$ by

$$f_p(x) = \begin{cases} 2, & x - p \in V; \\ 0, & \text{otherwise.} \end{cases}$$

Then f_p is

- A) Lebesgue integrable.
- B) not Lebesgue measurable only for p = 0.
- C) Lebesgue measurable only for p = 0.
- D) not Lebesgue measurable.
- (16) Let $z_i \in \mathbb{C}$ (i = 1, 2, 3, 4) with $z_1 \neq 0$. Which one of the following identities about cross ratio is false?
 - A) $(z_1, z_2, z_3, z_4) = (z_1 + z_4, z_2 + z_4, z_3 + z_4, 2z_4).$
 - B) $(z_1, z_2, z_3, z_4) = (z_1^2, z_1 z_2, z_1 z_3, z_1 z_4).$
 - C) $(z_1, z_2, z_3, z_4) = (z_1^2, z_2^2, z_3^2, z_4^2).$

- 4
- D) $(z_1, z_2, z_3, z_4) = \left(1, \frac{z_2}{z_1}, \frac{z_3}{z_1}, \frac{z_4}{z_1}\right)$.
- (17) Which of the following is not a reflexive Banach space?
 - A) For $1 , <math>l_p = \{(x_n) : \sum |x_n|^p < \infty\}$ with $\|.\|_p$. B) for $1 \le p \le \infty$, $l_p^n = (\mathbb{R}^n, \|.\|_p)$.

 - C) C_0 , the space of sequences converging to zero with sup norm.
 - D) $C\{1, 2, ..., n\}$, space of real valued continuous functions on $\{1, 2, ..., n\}$ with maximum norm.
- (18) Which of the following is not true?
 - A) If X is uncountable and d is an arbitrary metric on X, then (X, d) is separable.
 - B) Product of two separable metric spaces is separable.
 - C) ([a, b], d) (d is usual metric on [a, b]) is separable.
 - D) For a Lebesgue measurable subset E of \mathbb{R} and $1 \leq p \leq \infty$, $L^p(E)$ is separable.
- (19) Which of the following is not true?
 - A) $\mathbb{R}^2 \setminus \mathbb{Q}^2$ is path connected.
 - B) For $(x,y) \in \mathbb{R}^2$, the subspace $\mathbb{R}^2 \setminus \{(x,y)\}$ is connected and is homeomorphic
 - C) $\{(x,y) \in \mathbb{R}^2 : x = 0, -1 \le y \le 1\} \cup \{(x,y) : y = \sin \frac{1}{x}, 0 < x \le 1\}$ is
 - D) $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is connected.
- (20) Let $f(x) = \sin x$, then which of the following is not true?
- B) $\int_{0}^{\infty} \frac{|f(x)|}{x} dx = \pi/2.$
- A) $\int_0^\infty \frac{f(x)}{x} dx$ exists. B) $\int_0^\infty \frac{|f(x)|}{x} dx = \pi/2$ C) $\int_0^\infty \frac{f(x)}{x} dx$ does not exist in \mathbb{R} . D) $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}/2$.
- (21) Let H and K be normal solvable subgroups of a group G. Then, HK is
 - A) solvable but not normal in G.
 - B) not solvable but normal in G.
 - C) neither solvable nor normal in G.
 - D) solvable and normal in G.
- (22) The alternating group A_{∞} on infinitely many symbols
 - A) has a proper subgroup of finite index.
 - B) has no proper subgroup of finite index.
 - C) not a simple group.

- D) none of A), B), C).
- (23) Let G be a group of order 26. The number of subgroups of order 5 is
 - A) 0.
- B) 5.
- C) 6.
- D) 2.
- (24) Which one of the following statements is true?
 - A) An infinite abelian group has a composition series.
 - B) a finite abelian group has no composition series.
 - C) a finite abelian group has a composition series.
 - D) every group has a composition series.
- (25) Suppose ED stands for Euclidean domain, PID and UID stands for principal ideal domain and unique factorization domain respectively. Then which of the following statements is true?
 - A) $PID \Longrightarrow UFD \Longrightarrow ED$.
 - B) UFD \Longrightarrow PID \Longrightarrow ED.
 - C) $ED \Longrightarrow PID \Longrightarrow UFD$.
 - D) $ED \Longrightarrow UFD \Longrightarrow PID$.
- (26) Let R be a commutative ring with unity satisfying descending chain condition (d.c.c.) on its ideals. Consider the following statements.
 - 1. R satisfies ascending chain condition (a.c.c.) on its ideals.
 - 2. Every prime ideal in R is maximal.

Which of the following is correct?

- A) Statement 1 is correct and statement 2 is not correct.
- B) Statement 2 is correct and statement 1 is not correct.
- C) Both the statements 1 and 2 are correct.
- D) Both the statements 1 and 2 are false.
- (27) Let $\mathbb{Z}_p(\alpha)$ be an extension of \mathbb{Z}_p obtained by adjoining α to \mathbb{Z}_p , where α is a root of a degree two, irreducible polynomial over \mathbb{Z}_p . Then
 - A) $|\mathbb{Z}_p(\alpha)| = p^3$.
 - B) $|\mathbb{Z}_p(\alpha)| = p^2$.
 - C) $|\mathbb{Z}_p(\alpha)| = \infty$.
 - D) $\mathbb{Z}_p(\alpha)$ is a finite field but cannot say about its number of elements.
- (28) Let $F \subseteq E$ be a field extension. Let $\alpha \in E$ be a root of an irreducible polynomial f(x) over F of multiplicity three. Let β be any other root of f(x) in E. Then the multiplicity of β is

- A) two.
 B) greater than three.
 C) three.
 D) one.
- (29) The total number of subfields of a field with 729 elements is
 - A) one. B) two. C) three. D) four.
- (30) Let α be a positive constructible number. Then which one of the following is a constructible number?
 - A) $(\alpha)^{1/3}$. B) $(\alpha)^{1/10}$. C) $(\alpha)^{1/14}$. D) $(\alpha)^{1/16}$.
- (31) Let $K = \mathbb{Q}(\sqrt{2}, i)$ be the field generated over \mathbb{Q} by $\sqrt{2}$ and i. Then the dimension of $\mathbb{Q}(\sqrt{2}, i)$, as a \mathbb{Q} -vector space is equal to
 - A) 4. B) 3. C) 2. D) 1.
- (32) Let $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Then
 - A) A and B are diagonalizable.
 - B) A is diagonalizable but B is not.
 - C) B is diagonalizable but A is not.
 - D) neither A nor B is diagonalizable.
- (33) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} x_2 \\ x_1 + x_2 \\ x_1 - x_2 \end{array}\right)$$

and let $B = \{(1,2)^t, (3,1)^t\}$, $B' = \{(1,0,0)^t, (1,1,0)^t, (1,1,1)^t\}$ be ordered bases for \mathbb{R}^2 and \mathbb{R}^3 respectively. Then the matrix of T relative to B and B' is

A)
$$\begin{pmatrix} -1 & -3 \\ 4 & 2 \\ -1 & 2 \end{pmatrix}$$
.

B) $\begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 1 & -2 \end{pmatrix}$.

C) $\begin{pmatrix} -1 & 3 \\ -4 & 2 \\ -1 & 2 \end{pmatrix}$.

D) $\begin{pmatrix} 1 & 3 \\ -2 & -4 \\ 1 & -2 \end{pmatrix}$.

(34) Let $B = \{(1,1,0), (-1,0,1), (0,1,-1)\}$ be a basis of \mathbb{R}^3 and its dual basis $B^* = \{f_1, f_2, f_3\}$, where f_i , i = 1, 2, 3 are linear functionals defined on \mathbb{R}^3 . Then for $x = (x_1, x_2, x_3)$

A)
$$2f_1(x) = x_1 + x_2 + x_3$$
; $2f_2(x) = x_1 - x_2 + x_3$; $2f_3(x) = -x_1 + x_2 - x_3$.

B)
$$2f_1(x) = x_1 - x_2 + x_3$$
; $2f_2(x) = -x_1 - x_2 + x_3$; $2f_3(x) = -x_1 + x_2 - x_3$.

C)
$$2f_1(x) = x_1 + x_2 + x_3$$
; $2f_2(x) = -x_1 - x_2 + x_3$; $2f_3(x) = -x_1 + x_2 + x_3$.

D)
$$2f_1(x) = x_1 + x_2 + x_3$$
; $2f_2(x) = -x_1 + x_2 + x_3$; $2f_3(x) = -x_1 + x_2 - x_3$.

(35) Let $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$. Then its minimal polynomial is

A)
$$x^2(x-2)^2$$

B)
$$x^2(x-1)^2$$
.
D) $x(x-1)^3$.

A)
$$x^2(x-2)^2$$
.
C) $(x-1)^2(x-2)^2$.

D)
$$x(x-1)^3$$
.

- (36) The equation $u_{xx} + xu_{yy} = 0$ is
 - A) elliptic for x > 0, $y \in \mathbb{R}$ and hyperbolic for x < 0, $y \in \mathbb{R}$.
 - B) elliptic for all $(x, y) \in \mathbb{R}^2$.
 - C) hyperbolic for all $(x, y) \in \mathbb{R}^2$.
 - D) hyperbolic for x > 0, $y \in \mathbb{R}$ and elliptic for x < 0, $y \in \mathbb{R}$.
- (37) Let $G(x,\xi)$ be the Green's function for the linear second order ordinary differential equation L[y] = f(x), where $L = \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x)$ with $q, f \in C[a, b], p \in$ C'[a,b] and $p(x) \neq 0, x \in [a,b]$. Then which of the following is not true?
 - A) at the given point $x = \xi \in [a, b]$, the first derivative has jump discontinuity given by $\frac{d}{dx}G(x,\xi)\big|_{x=\xi^-}^{\xi^+} = \frac{-1}{p(\xi)}$.
 - B) $G(x,\xi) = G(\xi,x)$.
 - C) $G(x,\xi)$ and its first and second order derivatives are continuous for all $x \neq \xi$ in $a \leq x$, $\xi \leq b$.
 - D) for fixed ξ , $G(x,\xi)$ is the solution of the associated homogeneous problem L[y] =0, except at point $x = \xi$.
- (38) The initial boundary value problem

$$u_t = u_{xx}, \ 0 < x < 1, \ t > 0;$$

$$u(0,t) = u(1,t) = 0; u(x,0) = x(1-x), 0 \le x \le 1$$

has solution $u(x,t) = \sum_{n=1}^{\infty} a_n \exp(-n^2 \pi t) \sin(n\pi x)$, where a_n is equal to

- A) $8/(n^3\pi^3)$ if n is odd and 0 if n is even.
- B) $4/(n^3\pi^3)$ if n is odd and 0 if n is even.
- C) $8/(n^2\pi^2)$ if n is odd and 0 if n is even.
- D) $8/(n^3\pi^3)$ if n is even and 0 if n is odd.

8

(39) Consider the following partial differential equation

$$z^2(p^2 + q^2 + 1) = r^2$$

where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$. Which of the following statements is true about the above equation?

- A) $(x-a)^2 + (y-b)^2 + z^2 = r^2$ is a general integral.
- B) it is a semi-linear PDE of order 2 and degree 1.
- C) $4x^{2} + y^{2} 4xy + 5z^{2} 5r^{2} = 0$ is a particular solution.
- D) A), B), C) are true.
- (40) The vertical displacement u(x,t) of an infinitely long elastic string is governed by the initial value problem

$$u_{tt} = 4u_{xx}, -\infty < x < \infty, \ t > 0$$

$$u(x,0) = -x, \ u_t(x,0) = 0.$$

The value of u(x,t) at x=2, t=2 is

- A) -2.
- B) -4.
- C) 2.
- D) 4.
- (41) The equation of the surface satisfying $4yzp+q+2y=0,\ p=\frac{\partial z}{\partial x},\ q=\frac{\partial z}{\partial y}$ and passing through $y^2+z^2=1,\ x+z=2$ is given by
 - A) $x^2 + z + z^2 + y^2 = 3$. B) $x + z^2 + z + y^2 = 3$. C) $u + x + z + z^2 = 3$. D) $x^2 + z + z^2 + y = 3$.
- (42) An inviscid incompressible fluid of density ρ moves steadily with velocity $\vec{q} =$ (kx, -ky, 0), where k is constant, under no extremal force. The pressure p(x, y, z)in the fluid motion when $p(0,0,0) = p_0$, is
 - A) $p_0 \rho k^2 (y^2 x^2)$. C) $p_0 \frac{\rho k^2 (y^2 + x^2)}{2}$.
- B) $p_0 \rho k^2 (y^2 + x^2)$. D) $p_0 \frac{\rho k^2 (y^2 x^2)}{2}$.

- (43) A sphere is moving with constant velocity U in a liquid which is otherwise at rest. The velocity potential $\phi(r,\theta)$ for the flow is
 - A) $\frac{1}{2}Ua^3r^{-2}\cos\theta$. C) $\frac{1}{2}Ua^2r^{-2}\cos\theta$.

B) $\frac{1}{2}Ua^3r\cos\theta$.

- D) none of these.
- (44) In two dimensional motion, the vorticity vector is
 - A) perpendicular to the plane of flow.
 - B) parallel to the plane of flow.
 - C) oblique to the plane of flow.

- D) may be parallel or perpendicular to the plane of flow.
- (45) The singular solution of $p^3 4xyp + 8y^2 = 0$, where $p = \frac{dy}{dx}$ is
 - A) $27y 4x^2 = 0$.

B) $27y - 4x^3 = 0$. D) $27y + 4x^2 = 0$.

C) $27y + 4x^3 = 0$.

- (46) The arrangement of sources and sinks for $w = \log\left(z \frac{a^2}{z}\right)$ are
 - A) a source of unit strength at (a, 0).
 - B) two sinks of unit strength at $(\pm a^2, 0)$.
 - C) a source of unit strength at origin and two sinks of unit strength at (a,0) and (-a,0).
 - D) a source of unit strength at (a,0) and a sink at (0,-a) of unit strength.
- (47) By the method of variation of parameters, the particular solution of the equation $x^2y'' + xy' - y = x^2e^x$ is

B) $e^x - \frac{e^x}{x}$. D) $e^x - \frac{1}{x}$.

- (48) The solution of $u_{xx} 4u_{xy} + 4u_{yy} = 0$ is

- A) u = f(y+2x) + g(y+2x). B) u = f(y-2x) + g(y+2x). C) u = f(y+2x) + xg(y+2x). D) u = f(y+2x) xg(y+2x).
- (49) A complete integral of $f = xz_xz_y + yz_x^2 1 = 0$ obtained by Charpit's method is
 - A) $(z+b)^2 = 4(ax y)$. B) $(z+b)^2 = 4(ax + y)$. C) $(z-b)^2 = 4(ax + y)$. D) $(z+b)^2 = 4ax + y^2$.
- (50) The tensor form of Navier Stokes equations with x_i as space coordinates, u_i as velocity components, F_i as components of body forces, Δ as rate of dilation, p as pressure, ρ as density and ν as coefficient of kinematic viscosity, is given by

 - A) $\frac{du_i}{dt} = F_i \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i + \frac{2}{3} \nu \frac{\partial \Delta}{\partial x_i}.$ B) $\frac{du_i}{dt} = F_i + \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i + \frac{2}{3} \nu \frac{\partial \Delta}{\partial x_i}.$ C) $\frac{du_i}{dt} = F_i \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i + \frac{1}{3} \nu \frac{\partial \Delta}{\partial x_i}.$ D) $\frac{du_i}{dt} = F_i \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \nabla^2 u_i + \frac{2}{3} \nu \Delta.$