P/ID 37451/PMAA

Time : Three hours

Maximum : 100 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

Each question carries 2 marks.

- 1. Define the normalizer of a in G.
- 2. Define cyclic R–module.
- 3. Define the index of nilpotence of T.
- 4. Define elementary divisors of T.
- 5. Define unitary transformation.
- 6. Define an algebraic number.
- 7. If $a \in K$ is a root of $p(x) \in F[x]$, where $F \subset K$, prove that (x-a)|p(x), in K[x].
- 8. Define group of automorphisms of *K* relative to *F*.
- 9. State Frobenius theorem.
- 10. State Lagrange's identity.

MAY 2011

SECTION B — $(5 \times 6 = 30 \text{ marks})$

Answer ALL questions.

Each question carries 6 marks.

11. (a) Prove that $n(k)=1+p+...+p^{k-1}$.

 \mathbf{Or}

- (b) Suppose that G is the internal direct product of $N_1, N_2, ..., N_k$. Prove that for $i \neq j$, $N_i \cap N_j = (e)$, and if $a \in N_i, b \in N_j$, then ab = ba.
- 12. (a) If V is an *n*-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, prove that T satisfies a polynomial of degree n over F.

Or

- (b) If $u \in V_1$ is such that $uT^{k-1} = 0$, where $0 < k < n_1$, prove that $u = u_0 T^k$, for some $u_0 \in V_1$.
- 13. (a) If T is Hermitian and $vT^k=0$ for $k\geq 1$, prove that vT=0.

Or

(b) If $T \in A(V)$ is such that (vT, v)=0, for all $v \in V$, prove that T=0.

2 P/ID 37451/PMAA

14. (a) Prove that the fixed field of G is a subfield of K.

Or

- (b) Let K be the splitting field of f(x) in F[x] and let p(x) be an irreducible factor of f(x) in F[x]. If the roots of p(x) are $\alpha_1, \alpha_2, \dots, \alpha_r$, prove that for each i, there exists an automorphism σ_1 in G(K,F) such that $\sigma_i(\alpha_1) = \alpha_i$.
- 15. (a) Prove that the general polynomial of degree $n \ge 3$ is not solvable by radicals.

Or

(b) For every prime number p and every positive integer m, prove that there exists a field having p^m elements.

SECTION C — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

Each question carries 10 marks.

16. (a) State and prove Cauchy's theorem.

Or

- (b) Prove that every finite abelian group is the direct product of cyclic groups.
 - 3 P/ID 37451/PMAA

17. (a) Prove that two nilpotent transformations are similar if and only if they have the same invariants.

Or

- (b) For each i=1, 2, ..., k prove that $V_i \neq 0$; $V=V_1 \oplus V_2 \oplus ... \oplus V_k$ and the minimal polynomial of T_i is $q_i(x)^{l_i}$.
- 18. (a) Prove that the number e is transcendental.

Or

- (b) State and prove Sylvester's law.
- 19. (a) Prove that any splitting fields E and E' of the polynomials $f(x) \in F[x]$ and $f'(t) \in F'[t]$, respectively, are isomorphic by an isomorphism ϕ with the property that $\alpha \phi = \alpha'$.

\mathbf{Or}

- (b) If F is of characteristic 0 and if a, b are algebraic over F, prove that there exists an element $e \in F(a,b)$ such that F(a,b)=F(e).
- 20. (a) State and prove Wedderburn's theorem.

Or

(b) State and prove Left Division algorithm.

4 P/ID 37451/PMAA