Time : Three hours Maximum : 100 marks

$$
\text { SECTION A - }(10 \times 2=20 \text { marks })
$$

Answer ALL questions.
Each question carries 2 marks.

1. State Morera's theorem.
2. Define simply connected region.
3. Define a potential function.
4. State Weierstrass theorem.
5. Write Legendre's duplication formula.
6. State Arzela's theorem.
7. Define a free boundary arc.
8. Write Schwarz-Christoffel formula.
9. Write Legendre relation.
10. Define modular function.

SECTION B - ($5 \times 6=30$ marks $)$
Answer ALL questions.
Each question carries 6 marks.
11. (a) State and prove the maximum principle.

Or
(b) State and prove the argument principle.
12. (a) Find the residues at the poles of $\frac{1}{z^{2}+5 z+6}$.

Or
(b) State and prove Hurwitz theorem.
13. (a) For $\sigma=\operatorname{Re} s>1$, prove that
$\frac{1}{\zeta(s)}=\prod_{n=1}^{\infty}\left(1-p_{n}^{-s}\right)$.
Or
(b) Prove that a locally bounded family of analytic functions has locally bounded derivatives.
14. (a) Prove that the zeros $a_{1}, a_{2}, \ldots \ldots ., a_{n}$ and poles $b_{1}, b_{2}, \ldots . . b_{n}$ of an elliptic function satisfy $a_{1}+a_{2}+\ldots .+a_{n} \equiv b_{1}+b_{2}+\ldots .+b_{n}(\bmod M)$.

Or
2 P/ID 37455/PMAF
(b) Prove that a continuous function $u(z)$ which satisfies $\quad u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta \quad$ is necessarily harmonic.
15. (a) Prove that

$$
\frac{\wp^{\prime}(z)}{\wp(z)-\wp(u)}=\zeta(z-u)+\zeta(z+u)-2 \zeta(z) .
$$

Or
(b) Prove that the set of all function elements (f, Ω) with $e^{f(\zeta)}=\zeta$ in Ω is a global analytic function.

SECTION C - $(5 \times 10=50$ marks $)$

Answer ALL questions.

Each question carries 10 marks.
16. (a) State and prove Taylor's theorem.

Or
(b) If $p d x+q d y$ is locally exact in Ω prove that $\int_{\gamma} p d x+q d y=0$ for every cycle $\gamma \sim 0$ in Ω.

3 P/ID 37455/PMAF
17. (a) If u_{1} and u_{2} are harmonic in a region Ω, prove that $\int_{\gamma} u_{1}^{*} d u_{2}-u_{2}^{*} d u_{1}=0$.

Or
(b) Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x, a$ real.
18. (a) State and prove Mittag-Leffler theorem.

Or
(b) Prove that $\zeta(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$
19. (a) State and prove Riemann Mapping theorem.

Or
(b) State and prove Harnack's principle.
20. (a) Prove that every point γ in the upper half plane is equivalent under the congruence subgroup $\bmod 2$ to exactly one point in $\bar{\Omega} \cup \Omega^{\prime}$.

Or
(b) State and prove Monodromy theorem.

