$$
\text { SECTION A }-(10 \times 2=20 \text { marks })
$$

Answer ALL the questions. Each question carries 2 marks.

1. A coin is tossed three times. What is the probability that heads appear twice?
2. Define the moment of order k .
3. The random variable X can take on the values $x_{1}=-1$ and $x_{2}=+1$ with probabilities $P(X=-1)=P(X=+1)=0.5$. Determine the characteristic function of this random variable.
4. Define two-point distribution.
5. State Poisson law of large numbers.
6. State Borel-Cantelli Lemma.
7. Define parametric hypothesis and parametric test.
8. Define Pearson's χ^{2} statistic.
9. Define null hypothesis and alternate hypothesis.
10. State fundamental lemma.

SECTION B - ($5 \times 6=30$ marks $)$
Answer ALL questions.
Each question carries 6 marks.
11. (a) Let X be a random variable with the distribution function $F(x, y)$. Find the distribution of $Y=X^{2}$.

Or
(b) State and prove Chebyshev's inequality.
12. (a) The joint distribution of the random variable (X, Y) is given by the density.
$f(x, y)= \begin{cases}\frac{1}{4}\left[1+x y\left(x^{2}-y^{2}\right)\right] & , \text { for }|x| \leq \text { and }|y| \leq 1 \\ 0 & \text { for all other points }\end{cases}$
Show that X and Y are not independent.
Or
(b) The random variable X has the distribution $N(1 ; 2)$. Find the probability that X is greater than 3 in absolute value.
13. (a) State and prove the Bernoulli law of large numbers.

Or
(b) The random variables $X_{k}(k=1,2, \ldots . ., 16)$ are independent and have the same density $f(x)=\frac{1}{2 \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \cdot \frac{(x-1)^{2}}{4}\right]$.

Find the density of
$\bar{X}=\frac{1}{16} \sum_{k=1}^{16} X_{k}$.
Also find $P(0 \leq \bar{X} \leq 2)$.
14. (a) We have good and defective items in a lot and the proportion p of the defective items is unknown. From this lot, draw a simple sample of size $n=30$. Assign the number one to the appearance of a defective item and the number zero to the appearance of a good item. Suppose that there are four defective items in the sample. Test the hypothesis $H_{0}(p=0.10)$. Should we reject H_{0} at the significance level $\alpha=0.05$?

Or

(b) Consider a population in which the characteristic X has an arbitrary distribution whose first moment exists. Estimate the unknown expected value $E(\mathrm{X})=m$.

3 P/ID 37454/PMAD
15. (a) The expected value m of a population, where the characteristic X has the normal distribution $N(m ; 1)$, is unknown. Test the hypothesis $H_{0}\left(m=m_{0}\right)$ against the alternate hypothesis $H_{1}\left(m=m_{1}\right)$, where $m_{1}>m_{0}$, by applying a most powerful test based on a simple sample for a given α and β. What value should n have?

Or
(b) Derive the OC function $L(Q)$ of the sequential probability ratio test.

SECTION C - (5 $\times 10=50$ marks $)$
Answer ALL the questions.
Each question carries 10 marks.
16. (a) Prove that the equality $\rho^{2}=1$ is a necessary and sufficient condition for the relation $P(Y=a X+b)=1$ to hold .

Or
(b) Let $\left\{A_{n}\right\}, n=1,2, \ldots \ldots$, be a non increasing sequence of events and let A be their product. Prove that $P(A)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.
17. (a) If the l th moment m_{l} of a random variable exists, prove that it is expressed by
$m_{l}=\frac{\phi^{l}(0)}{i^{l}}$,
where $\phi^{l}(0)$ is the l th derivative of the characteristic function $\phi(t)$ of this random variable at $t=0$.

Or
(b) Prove by means of an example that the values of the characteristic function in a finite interval do not uniquely determine the distribution.
18. (a) State and prove de Moivre-Laplace theorem.

Or
(b) State and prove Lapunov theorem.
19. (a) State and prove Smirnov theorem.

Or
(b) State and prove Rao-Cramer inequality.
$5 \quad$ P/ID 37454/PMAD
20. (a) Explain uniformly most powerful test.

Or
(b) State and prove Wald's fundamental identity.

