A concentrated load P is applied at the end of a cantilever as shown in Fig. The cross section of the beam is a square of side 'a' with a hole of dia 'a/2'. The deflection at the tip of the cantilever is given by

Section -XX

(a)

$$\frac{1024 P}{(256-3\pi)E} \frac{L^3}{a^4} = \frac{1024 P}{(256-\frac{\pi}{64})E} \frac{L^3}{a^4} = \frac{256 P}{(1024-3\pi)E} \frac{L^3}{a^4}$$

A cantilever beam is subjected to a UDL. The cross section of the beam is a H-Section placed as shown in Fig. The bending stress distribution across the cross section will be

Section -XX

A thick cylinder of inner dia 'D', wall thickness t_2 and length 'L' is sealed at its both ends with caps. The thickness of the cap is t_1 . Allowable tensile yield stress = σ_y and allowable shear stress = τ_y . A gas is pumped into this cylinder at pressure 'p'. The cap will yield in shear at circumference of diameter 'D' when the gas pressure applied is more than

(a)

A rod of 20 dia is fixed to the ceiling of a roof on one end. A rotor of 50 kg mass is attached to the free end with bearings. The CG of the rotor is 10 mm away from the shaft axis. The rotor is 5 rotating at 600 rpm. The max tensile stress (in N/ Sq.mm) in the rod is nearly equal to 500 rotor bearing (d) 400 n 200 m (c) 300 n (a) 11/2 (b) 6 An automotive engine having a mass of 135 kg is supported on 4 springs with linear characteristics. Each of the 2 front springs have stiffness of 3 MN/m while the stiffness of each of 2 rear springs is 4.5 MN/m. The ongine speed (rpm) at which resonance is likely to occur is (c) 104/(n) (d) 103/(3) (a) 103/(6n) (b) 1/(6n) A weighing m/c consists of a 2 kg pan resting on a spring having linear characteristics. In this condition of resting on the spring, the length of spring is 200mm. When a 20 kg mass is placed on the pan, the length of the spring becomes 100mm. The undeformed length L in mm and the spring stiffness K in N/m are a) L = 220 & K=1862 (b) L = 200, K = 1960 (d) L = 200, K = 2 (c) L = 210, K = 1960 A circular shaft is subjected to a torque 'T' and a Bending Moment M. The ratio of max. shear stress to max, bending stress is (c) 2T/M (d) M/2T (a) 2M/T (b) T/2M

A solid block 'A' weighing 'Q' kg is resting on a flat floor. A smooth cylinder 'B' weighing 'P'
9 kg, is placed between the solid A and the vertical wall as shown in fig. The friction between the cylinder, wall and the block A is negligible. The co-efficient of friction between the block A and floor is μ. The minimum weight P required to disturb the block A is

(a)	(b)	(c)	(d) μ Q
$\frac{Q(1-Tan\theta)}{Tan\theta}$	$\frac{\mu Q Tan\theta}{(1-\mu Tan \theta)}$	μQ Cosθ	Cost
μ <i>Ταπθ</i>	**************************************		29

A hydraulic jack is used to compress a spring as shown in fig. Stiffness of spring is 10^5 N/m. By applying a pressure 'p' in the hydraulic cylinder, the spring gets compressed by 10mm. The cross sectional area of the piston is 25 cm². The applied pressure 'p is

10

	(a) 4 x 10 ⁵ Pascals	(b) 40 Pascals	(c) 250 Pascals	(d) 25 Pascals
11	A small plastic boat dumped into the wat	loaded with pieces of er , allowing the boat t	steel rods is floating in a o float empty, the water le	bath tub. If the cargo is evel in the tub will
	(a) Rise	(b) Fall	(c) Remains the same	(d) Rise and then fall
12	Viscosity of water in	comparison to mercury	ris	
	(a) higher	(b) lower	(c) same	(d) unpredictable
13	Froude number is sig	nificant in:		
	(a) Supersonics, as w	ith projectile and jet p	ropulsion	
			low, as with pipes, air craft	ts wings, nozzles, etc.
	(c) Simultaneous mo	tion through two fluids ect, as with ship's hulls	where there is a surface of	liscontinuity, gravity forces
	(d) All of these		100	
14	The purpose of surge	tank in a pipe line is t	0	
	(a) smoothen the flo	Contract and Administration of the Contract of	(b) minimize friction k	osses in pipe
	(c) prevent occurrent	e of hydraulic jump	(d) relieve pressure du	e to water hammer
15.	Head loss in turbuler	nt flow in a pipe		
	(a) varies directly as	velocity	(b) varies inversely as	square of velocity
	(c) varies approxima	tely as square of veloci	ty (d) varies inversely as	velocity
16.	from the bottom of		e is suddenly opened and	of diameter 0.1m at 0.3m coefficient of discharge o
	(a) 69.37 N	(b) 67.39 N	(c) 63.79 N	(d) 65.39 N
17.	turbine works. The		is half of that of the full so	under which the full scale ale turbine. If N is the RPN
	(a) N/4	(b) N/2	(c) N	(d) 2N
18	where the diamete upstream of the red	r is reduced from 20 lucer is 150 kPa . Th	cm to 10 cm. The press a fluid has a vapour pressu	ducer in a horizontal pipe ure in the 20 cm pipe jus ire of 50 kPa and a specifi narge (in m²/sec) that ca

	(a) 0.05	(b) 0.16	(c) 0.27	(d) 0.38	
9	For the stability true?	of a floating body, under the i	nfluence of gravity	alone, which of	the following is
-	(a) Metacentre	should be below the centre of	gravity		
-	(h) Metacentre	should be above the centre of	gravity		
- 1	(c) Metacentre	and centre of gravity must lie	on the same horize	ontal line	
	(d) Metacentre	and centre of gravity must lie	on the same verti	ical line	
20 A smooth pipe of diameter 200mm carries water. The pressure in the (elevation: 10m) is 50 kPa . At section 52 (elevation: 12 m) the press velocity is 2 m/sec . Density of water is 1000 kg/ m ³ and acceleration du sec ² . Which of the following is true?) the pressure i	s zu kra and		
	(a) Flow is fr	om S1 to S2 and head loss is			
		om 51 to 52 and head loss is	(d) Flow is from	52 to 51 and hea	ad loss is 1.06m
21.	The 2-D flow v	with velocity $\overline{v} = (x + 2y + 2)1$	+ (4-y) j is		
	100000000000000000000000000000000000000				
	(a) compressit	and irrotational	(b) compressib	le and not irrot	ational
	(c) incompress	ole and irrotational sible and irrotational	(d) incompress	le and not irrota ible and not irr	otational
22.	A venturimet	ole and irrotational sible and irrotational er of 20mm throat diameter se of 40mm diameter. If the ind to be 30 kPa, then, neglection (5) 1.0 m/sec	is used to meas	ible and not irr sure the velocit ce between the , the flow velocit	otational ty of water in a pipe and throa
	(c) incompress A venturimet horizontal pig sections is for (a) 0.2 m/sec A room con (the refriger electric resist that the refrontinuous)	ible and irrotational er of 20mm throat diameter be of 40mm diameter. If the ind to be 30 kPa, then, neglecti	is used to meas pressure differen- ing frictional losses (c) 1.4 m/sec and 15°C. The re- ectricity when re- fan. During a cand the electric	ible and not irr sure the velocit ce between the , the flow veloci	otational y of water in a pipe and throa ty is 0 m/sec -W refrigerato -W TV, a 1-kV y, it is observe tter are runnin
22.	(c) incompress A venturimet horizontal pig sections is for (a) 0.2 m/sec A room con (the refriger electric resist that the refrontinuous)	er of 20mm throat diameter of 40mm diameter. If the and to be 30 kPa, then, neglection (b) 1.0 m/sec tains 60 kg of air at 100 kPa rator consumes 250 W of elstance heater, and a 50-W rigerator, the TV, the fan, y but the air temperature in eroom that day is	is used to meas pressure different ing frictional losses (c) 1.4 m/sec and 15°C. The rectricity when refan. During a c and the electrical the room remains	ible and not irr sure the velocit ce between the , the flow veloci	otational y of water in a pipe and throa ty is 0 m/sec -W refrigerato -W TV, a 1-kV y, it is observe tter are runnin
22.	(c) incompress A venturimet horizontal ply sections is for (a) 0.2 m/sec A room con (the refriger electric resi that the refrontinuous loss from th (a) 3312 kJ/	er of 20mm throat diameter of 40mm diameter. If the and to be 30 kPa, then, neglection (b) 1.0 m/sec tains 60 kg of air at 100 kPa rator consumes 250 W of elstance heater, and a 50-W rigerator, the TV, the fan, y but the air temperature in eroom that day is	is used to meas pressure differencing frictional losses (c) 1.4 m/sec and 15°C. The rectricity when refan. During a cand the electric the room remains the room	ible and not irr sure the velocit ce between the , the flow velocit (d) 2. room has a 250 anning), a 120 old winter day resistance hea ains constant. (c) 5112 kJ/h	otational ry of water in a pipe and throa ty is 0 m/sec W refrigerato W TV, a 1-kV y, it is observe ter are runnin The rate of hea (d) 2952 kJ/h

	I serve i serio e conservante e se					
	(a) 27°C	(b) 32°C			(c) 52°C	(d) 85°C
26.	For given combined thermal conductivity given as					
	(a) $\frac{k}{h_t}$ and $\frac{k}{h_t^2}$	(b) $\frac{k}{h_i}$ a	$\frac{2k}{k_t}$	(c) $\frac{2k}{h_t}$ and $\frac{k}{h_t^2}$	(d) $\frac{2k}{h_f}$	and $\frac{k}{h_t}$
27.	Match the following					
	P:Compressible		U: Rey	nolds number		
	O: Free surface		V: Nus	selt number		
	R: Boundary la		W: We	ber number		
	S: Pipe flow		X: Fro	ude number		
	T: Heat convec	tion	Y: Ma	h number		
			Z: Skir	friction coefficie	nt	
-	(a) P-U; O-X; R-V;	S-Z: T-W	sales the property and the last	and the same of th		; T-V
	(a) P-U; Q-X; R-V; (c) P-Y; Q-W; R-Z;	S-U; T-X	L between the	(b) P-W; Q-X (d) P-Y; Q-W	; R-Z; S-U ; R-Z; S-U	; T-V
28.		S-U; T-X occuple j nperature ce is 400 W/mK, 0	unction of a gas W/m ² K C = 400.	(b) P-W; Q-M (d) P-Y; Q-W of diameter 0.70 stream. The conv Thermo-physics J/kg K and r = 85	; R-Z; S-U ; R-Z; S-U 6 mm is t ective heat d propertie 600 kg/m ³ . I	; T-V to be used for the transfer co-efficient is of thermocouple if the thermocouple if the thermocouple.
28.	(c) P-Y; Q-W; R-Z; 2 A spherical thermore measurement of tem on the bead surfact material are k = 20 initially at 30°C is	S-U; T-X occuple j nperature ce is 400 W/mK, 0	unction of a gas W/m²K C = 400 . a hot s	(b) P-W; Q-M (d) P-Y; Q-W of diameter 0.70 stream. The conv Thermo-physics J/kg K and r = 85	; R-Z; S-U ; R-Z; S-U 6 mm is t ective heat d propertie 600 kg/m ³ . I	; T-V to be used for the transfer co-efficient is of thermocouple if the thermocouple if the thermocouple.
	(c) P-Y; Q-W; R-Z; : A spherical thermomeasurement of termon the bead surface material are k = 20 initially at 30°C is reach 298°C, is a) 2.35 s	S-U; T-X occouple j aperature ce is 400 W/mK, (placed in b) 4.9 s cerials of t	unction of a gas W/m²K C = 400 a bot s	(b) P-W; Q-M (d) P-Y; Q-W of diameter 0.70 stream. The conv. Thermo-physics J/kg K and r = 85 tream of 300°C,	; R-Z; S-U ; R-Z; S-U 6 mm is t ective heat il propertie 600 kg/m ³ . I the time ta c) 14.7 s	; T-V to be used for the transfer co-efficients of thermocouple of the thermocouple of the bead to do 29.4 s allable for lagging
	(c) P-Y; Q-W; R-Z; : A spherical thermomeasurement of termon the bead surface material are k = 20 initially at 30°C is reach 298°C, is a) 2.35 s Two insulating materials are series of the series	S-U; T-X occouple j nperature ce is 400 W/mK, (placed in b) 4.9 s terials of t fluid. If the	unction of a gas W/m²K C = 400 . a hot s bermal c he radial	(b) P-W; Q-M (d) P-Y; Q-W of diameter 0.70 stream. The conv. Thermo-physics J/kg K and r = 85 tream of 300°C, onductivity K and thickness of each uctivity should be	F. R-Z; S-U; R-Z; S-U 6 mm is the ective heat all properties 100 kg/m ³ . I the time tate 112K are averaged in the material is	to be used for the transfer co-efficiences of thermocouple of the thermocouple of the bead to do 29.4 s allable for lagging the same.
	(c) P-Y; Q-W; R-Z; : A spherical thermomeasurement of tem on the bead surfac material are k = 20 initially at 30°C is reach 298°C, is a) 2.35 s Two insulating mat pipe carrying a hot (a) material with his	S-U; T-X occouple j nperature ce is 400 W/mK, 6 placed in b) 4.9 s cerials of t fluid. If the	unction of a gas W/m²K C = 400 . a hot s hermal che radial mal conductivity f mal conductivity	(b) P-W; Q-N (d) P-Y; Q-W of diameter 0.70 stream. The conv. Thermo-physics J/kg K and r = 85 tream of 300°C, onductivity K and thickness of each uctivity should be or the outer. activity should be	R-Z; S-U; R-Z; S-U 6 mm is the ective heat all properties 100 kg/m ³ . In the time tate 112K are averaged as the extension of	to be used for the transfer co-efficients of thermocouple of the thermocouple of the bead to discount of the bead to discount of the same.
29.	(c) P-Y; Q-W; R-Z; A spherical thermomeasurement of tem on the bead surfac material are k = 20 initially at 30°C is reach 298°C, is a) 2.35 s Two insulating mat pipe carrying a hot (a) material with his one with lower ther (b) material with lo	S-U; T-X occouple j nperature ce is 400 W/mK, 6 placed in b) 4.9 s cerials of t fluid. If the gher there mal cond- wer there remal cond-	unction of a gas W/m²K C = 400 . a hot s bermal che radial mal conductivity in al conductivity in all con	(b) P-W; Q-N (d) P-Y; Q-W of diameter 0.70 stream. The conv. Thermo-physics J/kg K and r = 85 tream of 300°C, onductivity K and thickness of each uctivity should be or the outer. activity should be for the outer.	; R-Z; S-U ; R-Z; S-U 6 mm is tective heat all properties 100 kg/m ³ . I the time ta c) 14.7 s 12K are av material is e used for th	; T-V to be used for the transfer co-efficiences of thermocouple of the thermocouple o

30.	The definition of	of I K as per	the interna	tionally	accepted to	mpera	ture sc	ale is	
٦	(a) 1/100th the water.	difference be	tween norn	nal boili	ng point an	d norn	nal free	zing poi	nt of
	(b) 1/273.15th t	he normal fi	reezing poin	t of wate	r				
	(c) 100 times th point of water.	e difference	between the	e triple p	oint of wat	ter and	the no	rmal free	zing
	(d) 1/273.16th (f the triple p	point of wat	er.					_
31.	For a perfect g	<u>Li</u> aric thermal	st I	Π:	<u>List II</u> (1) 0				
	(B) Isoth (C) Isen	ent ermal comp tropic compi e – Thomson	ressibility	22	(2) ∞ (3) 1/v (4) 1/T				
	(D) Jour	e - I nomson	Coefficient	3	(5) 1/p				
					(6) 1/2				
							Tean a	-3,B-4,C	6 D.
_	1	P. 1 (0.3.4)	1 D 1 C 4 D	V. 6 (4)	AADSC				
	(a) A-4,B-3,C-2,		-1,B-2,C-4, D		A-4,B-5,C-				-37.5
32.	For a given he material will b	at flow and f e maximum	or the same for	thickne	ss, the tem	peratu	re drop	across t	377
32.	For a given he material will b	at flow and f e maximum (b) stee	or the same for	thickne	ss, the tem	peratu	re drop	across t	he
32.	For a given her material will b (a) copper Select stateme: A, B if the corr (A) Fou (B) Wel (C) Gra	at flow and f e maximum (b) stee	for the same for I II matchin for (1) is (A) (1) Si (2) For (3) N r (4) R (5) T	(c) glass g the pr and that L urface te orced co (atural co	-wool ocesses in 1 for (2) is (ist II nsion nvection heat condu	(d) r List L 1	re drop	across t	he
	For a given her material will b (a) copper Select stateme: A, B if the corr (A) Fou (B) Wel (C) Gra	at flow and f e maximum (b) stee nts from Lis rect choice for List I rier number per number shoff number shoff number	for the same for I II matchin for (1) is (A) (1) Si (2) For (3) N r (4) R (5) T	(c) glass g the pr and that L urface te orced co fatural co adiation ransient lass diffe	-wool ocesses in 1 for (2) is (ist II nsion nvection heat condu	(d) r List L I B)	re drop efracto Enter yo	across t	er as
	For a given her material will b (a) copper Select stateme A, B if the corr (A) Fou (B) Wel (C) Gra (D) Sch (a) A-2, B-1, C-3	(b) stee (b) stee Its from List I rier number shoff number shoff number shoff number	or the same for It II matchin or (1) is (A) (1) Si (2) For (3) N r (4) R (5) T (6) M (5) T (6) M	(c) glass g the property and that Lurface te orced contained contained contained contained that lass differences to the contained that the cont	-wool ocesses in I for (2) is (ist II nsion nvection nvection heat condustion 5, B-2, C-3, I	(d) r List L I B)	re drop efracto Enter yo	across t	er as
33.	For a given her material will b (a) copper Select stateme A, B if the corr (A) Fou (B) Wel (C) Gra (D) Sch (a) A-2, B-1, C-3	(b) stee ints from List rect choice for List I rier number ber number shoff number midt number heat transfe	or the same for t II matchin or (1) is (A) (1) So (2) Fo er (3) N r (4) R (5) T (6) M , B-1, C-3, D-6	(c) glass g the property and that Lurface te orced contained contained contained contained that lass differences to the contained that the cont	-wool ocesses in I for (2) is (ist II nsion nvection nvection heat condustion 5, B-2, C-3, I	(d) r List L I B)	re drop efractor Enter yo d) A-5, B	across t ry brick our answ	he er as

_	system				
	(a) is positive or			gative or zero	
_	(c) is zero	(d) can t	e positive, negati	ve or zero
16.		rder of magnitude, th ated water vapour an			of (a) pure iron, (b) liquid arranged as
	(a) a b c d	(b) b c a d		(c) dabc	(d) d c b a
37.		let and outlet temper ifference (LMTD) is	atures	of hot and cold fl	uids, the Log Mean
	(a) greater for p	arallel flow heat excl	hange	than for counter	flow heat exchanger.
					flow heat exchanger.
		h parallel and counte			
		n the properties of th			
38.	A positive value	of Joule-Thomson c	oeffici	ent of a fluid mea	ns
	(a) temperature	drops during thrott		(b) temperature r threttling	emains constant during
	(c) temperature	rises during throttli	ng	(d) none of these	
39.	A Carnot engir the heat source		orbed	heat to a sink at	30°C. The temperature o
	(a) 100 °C	(b) 433 °C		(e) 737 °C	(d) 1010 °C
			ature		d T and T and 400 K. For
40.		ates between temperally efficient, the valu		will be	
40.				(c) 750 K	(d) 650 K
40.	(a) 700 K In a heat exch	(b) 600 K anger, the hot liquid bling fluid enters at 3	es of T	(c) 750 K	(d) 650 K ure of 180°C and leaves a C. The capacity ratio of th

	(a) Resultant force is zero	(b) resultant c		
	(c) resultant force is numerically equal to resultant couple	(d) resultant f both are equa	orce and the rest I to zero.	ultant couple,
13	A torsion bar with a spring constant constant for each portion would be		n' equal lengths.	The spring
	(a) nk		(b) k ⁿ	
	(c) k/n		(b) k ⁿ (d) k ^{1/n}	
	of the spring is doubled and mass i system will be equal to (a) 1/2δ	s made man, then	(b) δ	
	(c) 2δ		(d) 1/4 8	
45	To ensure self locking in a screw j	ack it is essential t	hat helix angle is	r.
	(a) larger than friction angle (c) equal to friction angle For a particular load distribution	(b) smaller than (d) such as to give	friction angle re maximum effi	ciency in lifting
45	(a) larger than friction angle (c) equal to friction angle	(b) smaller than (d) such as to give and support cond (O < x <l) give<="" is="" td=""><td>friction angle we maximum effi ition in a beam on by M(x) = Ax-</td><td>ciency in lifting of length `L.', Bx², where A</td></l)>	friction angle we maximum effi ition in a beam on by M(x) = Ax-	ciency in lifting of length `L.', Bx², where A
	(a) larger than friction angle (c) equal to friction angle For a particular load distribution bending moment at any section 'x and B are constants. The shear for	(b) smaller than (d) such as to give and support cond (O < x < L) is give rec in the beam w	friction angle we maximum effi ition in a beam o en by M(x) = Ax- ill be zero at 'x'	ciency in lifting of length `L', Bx², where A equal to
46	(a) larger than friction angle (c) equal to friction angle For a particular load distribution bending moment at any section 'x and B are constants. The shear fo	(b) smaller than (d) such as to give and support cond (O < x < L) is give rec in the beam w	friction angle we maximum effi ition in a beam o en by M(x) = Ax- ill be zero at 'x'	ciency in lifting of length `L', Bx², where A equal to
46	(a) larger than friction angle (c) equal to friction angle For a particular load distribution bending moment at any section 'x and B are constants. The shear for the she	(b) smaller than (d) such as to give and support cond (O < x < L) is give rec in the beam w	friction angle we maximum efficition in a beam of the by M(x) = Ax- ill be zero at 'x' (c) 2A/B	ciency in lifting of length 'L', Bx², where A equal to (d) A²/B
46	(a) larger than friction angle (c) equal to friction angle For a particular load distribution bending moment at any section 'x and B are constants. The shear fo (a) A/2B (b) A/B If A is [8 5] then A ¹²³ -A ¹²⁶ (a) 0 (b) 1	(b) smaller than (d) such as to give and support cond (O < x < L) is give rec in the beam w	friction angle we maximum efficition in a beam of the by M(x) = Ax- ill be zero at 'x' (c) 2A/B	ciency in lifting of length 'L', Bx², where A equal to (d) A²/B

	(a) Orthogonal	Matrix	(b) Skew S	
	(c) Symmetric		(d) Idempo	tent
0	Vector a= 3i+	2j - 6k, vector $b = 4i - 3j + k$,	angle between above ve	ectors is
	(a) 90°	(b) 0°	(c) 45°	(d) 60°
51	The state of the s	ity for A to fail an examination t either A of B fail is	on is 0.2 and that for B i	s 0.3, then
_	(a) 0.5	(b) 0.06	(c) 0.44	(d) 0.1
52	Area bounded	by the parabola 2y= x ² and t	he line x = y-4 is equal t	0
	(a) 4.5	(b) 9	(c) 18	(d) 36
53	Chance that a	leap year selected at random	will contain 53 Sunday	s is
	(a) 3/7	(b) 7/2	(e) 7/3	(d) 2/7
	$x \to 0$ x^2			
55	left to right. T kg and 5 kg. Q after impact	& Q are traveling horizontal hey are separated by a distar 15 the coefficient of restitution and when (seconds) and who oning of Q. The correspondi	on is 0.7 what is the velo ere (metres) will they in	of the objects are 3 ocity (m/s) of P and appact with respect
55	Two objects P left to right. T kg and 5 kg. Q after impact	& Q are traveling horizontal hey are separated by a distar 15 the coefficient of restitution and when (seconds) and who oning of Q. The correspondi	ly with velocity of 8 m/s ace of 15 m. The mass on is 0.7 what is the velo- ere (metres) will they in an answers are respecti	these see & 5 m/see from of the objects are 3 seity (m/s) of P and appact with respect

$E_{ss} = 2 \times 10^5 \text{ N/mm}^2$, $E_g = 1 \times 10^5 \text{ N/m}^2$	The state of the s
 a) σ_c = 20 (Compressive), 	b) $\sigma_{c} = 30$ (Compressive),
σ _{ss} = 30 (Tensile)	σ _{ss} = 20 (Tensile)
c) $\sigma_{c} = 30$ (Tensile),	d) $\sigma_{c} = 30$ (Tensile),
σ _{ss} = 20 (Compressive)	σ _{SS} = 20 (Tensile)

A short column of external diameter D and internal diameter d is subjected to a compressive load P acting with an eccentricity 'e'. If the stresses at one of the extreme fibre is zero then the eccentricity has to be

(a) $\frac{D^2 + d^2}{8\pi D}$	b) $\frac{D^2 + d^2}{8D}$	c) D ² - d ² 8D	d) $\frac{D^3 - d^3}{8D^2}$
onto	0.0	1 00	

The number of degrees of freedom in the 3 link mechanism shown below is given by

58

	(b) 2	(c) 3	(d) 0
	tion of motion for a factor will be	a damped vibration is giv	en by $6 \ddot{x} + 9 \dot{x} + 27 x = 0$. The
(a) 0.25	(b) 0.5	(c) 0.35	(d) 0.75
in the figu	ure. If the coefficient the earth of the applied at the earth of the e	nt friction is 0.25 at the l	e a torque of 100 Nm as shown brake surface what is the value of
(a) 559.4	N (b) 57	9.4 N (c) 43	9,4 N (d) 1000 N
		shown in the figure the p I load on the gear tooth	inion transmits 250 kw at 1800
i rpm. W			Gear2 N ₂ = 140 teeth

(4.1

	(a) Modulus of	Elasticity		(b) Load Applied			
	(c) Strain Rate			(d) None of	ALCO AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1		
63	Which of the f	ollowing p	rocesses indu	ce more stress in	the metal?		
	(a) Hot rolling	(b) Fo	rging	(c) Swaging			(d) Turning
64	The essential i	ngredient	of any harden	ed steel is			
	(a) Austenite (b) Pearlite			(c) Martensite			(d) Cementite
65	Following is a	process us	sed to form po	wder metal to sh	ape		
	(a) Sintering	(b) Explo	sive Compact	ing (c) Isostatic	Molding	(d)	All of these
				at by wire-cut EDN			
16	diameter. A un	iform spark on. If the fe mm ³ /min)	gap of 0.5 mm ed rate of the w	at by wire-cut EDM on both sides of the vire into the sheet i	he wire is ma	aintai	ned during
67	diameter. A un cutting operati- removal rate(in	iform spark on. If the fe mm ³ /min)	gap of 0.5 mm ed rate of the w will be	on both sides of t	he wire is mais 20 mm/min	aintai a, the	ned during materia! (d) 400
	diameter. A un cutting operati- removal rate(in	iform spark on. If the fe n mm²/min) (b) ng tools are	gap of 0.5 mm ed rate of the w will be	on both sides of t ire into the sheet i	(c) 300 of ferrous n	nintai a, the netals igh T	ned during materia! (d) 400
	diameter. A un cutting operative removal rate(in (a) 150 Diamond cuttin (a) high tool hardness	iform spark on. If the fe mm²/min) (b) ng tools are (b) chemi of tool m iron cution of a	gap of 0.5 mm ed rate of the w will be 0) 200 not recommen- ical affinity aterial with	ded for machining	he wire is mais 20 mm/min (c) 300 of ferrous n (d) H condi	nintai a, the netuls igh T activi	ned during materia! (d) 400 due to hermal ty of work
67	diameter. A un cutting operation of the cutting operation of the cutting (a) 150 Diamond cutting (a) high tool hardness During the execution of the cutting of the cutting the cutting of the cutting operation operat	iform spark on. If the fe mm²/min) (b) g tools are (b) chem of tool m iron cution of a cl be erpolation	c gap of 0.5 mm ed rate of the w will be b) 200 not recommen- ical affinity aterial with CNC part prog	ded for machining (c) Poor tool toughness ram block N920 G	he wire is mais 20 mm/min (c) 300 of ferrous n (d) H condi	nintai a, the netuls igh T activi rial	ned during materia! (d) 400 due to hermal ty of work
57	diameter. A un cutting operation of the cutting operation of the cutting operation of the cutting of the cutting operation of the cutting operation operation operation operation operation operatio	iform spark on. If the fe mm²/min) (b) (b) chem of tool m iron cution of a cl be erpolation se	gap of 0.5 mm ed rate of the w will be b) 200 not recommen- ical affinity aterial with CNC part prog	ded for machining (c) Poor tool toughness ram block N920 G	(c) 300 (d) H condimates (c) Linear	nintai a, the netuls igh T activi rial	ned during materia! (d) 400 due to hermal ty of work 5.0 the type of

	(a) half	(b) sixt	een times	(c) Iwo	Times	(d) Eight	times		
71	An oxidising process used for aluminium and magnesium articles is called								
	(a) galvanis	ing	(b) Anodis	ing (c)	Parkerisin	(d) She	eradising		
72.	One of the characteristics of Polymer is								
	(a) high Ter Stability	mperature	(b) High Mechanical Strength		(c)High Elongation		(d) Low Hardness		
73	Usually Materials with the following crystal structure fail in ductile mode								
	(a) FCC	(b) B	CC	HCP (d) None of these					
74	Work hardening strengthens an alloy by								
	(a) Removing Internal defects in the crystal structure				(b) increasing the dislocation density				
	(c) Decreasi	ng the grain	n size of the	(d) Increasing the lattice resistance to dislocation motion					
75	solid cylinder vertical wall	of diameter at point 'A' a	D and height nd hinged at p	cone of heigh 'h/2' as show point B on the	nt 'h' and bas m in figure, l e floor, The c	e diameter D t is kept inclir object stays in	attached to a ned touching to a n this inclined nly if θ is less		
75	solid cylinder vertical wall position with	of diameter at point 'A' a	D and height nd hinged at p	cone of heigh 'h/2' as show point B on the	h't' and basen in figure. It of floor. The opendicular to	t is kept inclir object stays in the floor), o	attached to a ned touching to a n this inclined		
75	solid cylinder vertical wall position with than	wall	D and height nd hinged at p	cone of heigh 'h/2' as show point B on the ition (axis per	h't' and basen in figure. It of floor. The opendicular to	e diameter D t is kept inclir object stays in	attached to a ned touching to a this inclined		
75	solid cylinder vertical wall position with than	of diameter at point 'A' a hout going to	D and height nd hinged at provided the provided to the provided to the provided the	cone of heigh 'h/2' as show point B on the ition (axis per	h't' and basen in figure. It of floor. The opendicular to	be diameter D t is kept inclir sbject stays ir t the floor), o	attached to a ned touching to a this inclined		

A hollow MS pipe is kept on a smooth straight edge with the pipe mid point sitting on it. A load 'W" Newtons is applied at the ends which is keeping the pipe balanced in the horizontal 75 condition, what is the safe maximum load 'W' that can be applied without yielding the tube. Consider the self weight of the tube as 'p' N/m. Diameter of the pipe is 'd', Youngs modulus of pipe is E, Allowable yield stress is a 2_m 2m MS Pipe W b) (σπd4-32 p)/(32 E) a) (o n d4 - 64 p)/ (64 E) d) (ond3-64 p)/64 c) $(\sigma \pi d^3 + 64 p)/64$ 77 A car crashes against a wall. The initial velocity at collision is 15m/sec and the velocity after collision is 2.6m/sec in the opposite direction. The mass of the car is 1500kg, what is the average force exerted on the automobile bumper if collision lasts for 0.15 seconds. b) 2.1 x 10° N c) 2.76 x 105 N d) None of these a) 1.76 x 105 N 78 Differential equation for the variation of amount of salt 'x' in a tank is given by : (dx/dt) + (x/20) = 10, where x is in kg and t is in minutes. Assuming that at time zero there is no salt in the tank, find the time at which the amount of salt increases to 100kg a) 100 in 2 b) 50 ln 2 c) 20 in 2 d) 10 ln 2 79 A 5 mm diameter aluminium alloy test bar is subjected to a load of 500 N. if the diameter of the bar at this load is 4 mm, the true strain is c) 0.25 (d) 0.45 a) 0.56 (b) 0.22 80 A material is dimensionally stable at room temperature if its glass transition temperature (T_e) is a) Below room (b) Just Above room (c) Equal to room (d) Well above room temperature temperature temperature temperature