NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

QUESTION BOOKLET

Diploma Polytechnic Entrance Test - 2011

Paper - II (MATHEMATICS)

Roll No.

(Enter your Roll Number in the above space)

Booklet No.

C 200967

Time Allowed: 1.30 Hours

Max. Marks: 70

INSTRUCTIONS:

- 1. Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT - MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, fluid pens etc., otherwise your answer sheet is likely to be rejected.
- 7. After completing the test, handover the ANSWER SHEET to the Invigilator.

PAPER - II

MATHEMATICS

- 1. The equation $2x^2 + kx + 3 = 0$ will have real roots if the value of k is
 - $(1) \quad k \ge \sqrt{24}$

 $(2) \quad k \le \sqrt{24}$

(3) Both (1) and (2)

- (4) None of the above
- **2.** If $\sqrt{x-1} \sqrt{x+1} + 1 = 0$, then 4x equals
 - (1) 2
- (2) 3
- (3) 4

- (4) 5
- 3. If α and β are the two roots of the equation $ax^2 + bx + c = 0$, then $\alpha^2 + \beta^2 = ?$
 - $(1) \quad \frac{b^2 4ac}{2a}$

 $(2) \quad \frac{b^2 - 2ac}{a}$

 $(3) \quad \frac{b^2 - 2ac}{a^2}$

- $(4) \quad \frac{b^2 + 2ac}{a}$
- 4. The area of an equilateral triangle whose side is 6a cm is
 - $(1) \quad 9a^2\sqrt{3}$

(2) $3a\sqrt{3}$

(3) $a\sqrt{3}$

- (4) $9a\sqrt{3}$
- 5. Diagonals of a trapezium divide each other
 - (1) diagonally

(2) proportionally

(3) equally

- (4) at right angle
- 6. If a line divides any two sides of a triangle in the same ratio, then the line must be
 - (1) Perpendicular on the base
 - (2) Parallel to the third side
 - (3) Intersecting the third line in the same ratio
 - (4) None of these

- 7. The distance between the lines 4x + 3y = 11 and 8x + 6y = 15 is:
 - $(1) \frac{7}{2}$

(2) $\frac{7}{3}$

 $(3) - \frac{7}{5}$

- $(4) \frac{7}{10}$
- 8. The ratio in which the line segment joining (3,4) and (-2,1) is divided by the y axis is:
 - (1) 1:2

(2) 1:3

(3) 3:2

- (4) None of these
- 9. If $\tan \theta = \frac{12}{5}$ then the value of $\sin \theta$ is:
 - (1) $\frac{12}{13}$

(2) $\frac{13}{12}$

(3) $\frac{5}{12}$

- (4) $\frac{5}{13}$
- 10. The value of $\tan \theta = \sqrt{2} 1$, then the value of the expression $\frac{\tan \theta}{1 + \tan^2 \theta}$ is:
 - $(1) \quad \frac{\sqrt{2}}{4}$

(2) $\frac{1}{4}$

(3) $\sqrt{2}$

- $(4) \quad \frac{1}{\sqrt{2}}$
- 11. The values of $\tan \theta$ and $\cot \theta$ are equal when:
 - $(1) \quad \theta = 30^{\circ}$

(2) $\theta = 45^{\circ}$

(3) $\theta = 90^{\circ}$

(4) $\theta = 0^{\circ}$

12.	The total surface	area of a h	emisphere	of radius r	is given l	ov .
12.	The total surface	area or a n	emisphere c	n raulus /	is given i	эу.

 $(1) \quad 2\pi r^2$

(2) πr^2

(3) $3\pi r^2$

 $(4) \quad 4\pi r^2$

13. The probability of getting heads in both trials when a balanced coin is tossed twice will be:

(1) $\frac{1}{4}$

(2) $\frac{1}{2}$

(3) 1

 $(4) \quad \frac{3}{4}$

14. A single letter is selected at random from the word, "PROBABILITY" the probability that it is vowel is:

 $(1) \quad \frac{3}{11}$

(2) $\frac{4}{11}$

(3) $\frac{2}{11}$

(4) 0

15. A chance of throwing an ace first only of two successive throws with an ordinary die is:

(1) $\frac{1}{36}$

(2) $\frac{5}{36}$

(3) $\frac{25}{36}$

 $(4) \frac{1}{6}$

16. A bag contains 4 tickets numbered 1, 2, 3, 4 and another bag contains 6 tickets numbered 1, 2, 4, 6, 8, 9. One bag is chosen and ticket is drawn, the probability that the ticket bears the number 4 is

5

(1) $\frac{1}{48}$

(2) $\frac{1}{8}$

(3) $\frac{5}{24}$

 $(4) \quad \frac{2}{24}$

				_
4 27	TA' 1 11 1	:C-1	02 I I I	has a sainaidant root?
17.	ring the value of R	ii the equation	Zx + Rx + 1 = 0	has a coincident root?
	m man outh . man an			

(1) $2\sqrt{2}$

(2) $3\sqrt{2}$

(3) $\sqrt{2}$

(4) $\frac{1}{\sqrt{2}}$

18. Which type of roots the equation
$$3x^2 - 2x - 3 = 0$$
 will have?

(1) Real

(2) Coincident

(3) No root

(4) None of these

19. Find the roots of the equation
$$3x^2 + 11x + 10 = 0$$

(1) $\frac{5}{3}$ and 2

(2) $-\frac{5}{3}$ and -2

(3) -3 and 2

(4) 2 and 7

20. If the quadratic equation
$$3x^2 + px - 5 = 0$$
 has sum of the roots $-\frac{2}{3}$, the value of p is

- (1) 2
- (2) 3
- (3) 4

(4) -4

21. If the roots of
$$px^2 + qx + 3 = 0$$
 are reciprocal to each other then

(1) q = 3

(2) p = 3

 $(3) \quad p-q=0$

p=0

22. If the sum of roots of a quadratic equation is 4 and one root is
$$2 - \frac{\sqrt{7}}{3}$$
, the other root is

(1) $1 + \frac{\sqrt{7}}{3}$

(2) 2

 $(3) \qquad 2 + \frac{\sqrt{7}}{3}$

(4) $3 - \frac{\sqrt{7}}{2}$.

23.	AB and CD	are two	perpendicular	diameters	of a	circle	with	centre	O. The	chord
	AC is equal to	o:								

$$(1) \quad \frac{1}{\sqrt{2}}AB$$

$$(2) \quad \frac{1}{2}AB$$

$$(2) \quad \frac{1}{2}AB$$

$$(4) \quad \frac{1}{2}\sqrt{AB \times CD}$$

A triangle is inscribed in a circle such that each of its vertices are equidistant from 24. the centre. What type of triangle it is?

- (1) Equilateral triangle
- Isosceles triangle (2)
- Obtuse angle triangle (3)
- Right angle triangle **(4)**

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3 its y 25. intercept is:

- **(1)**
- (2) $\frac{2}{3}$ (3) 1

The area of a triangle with vertices at (-4,1), (1, 2), (4,-3) is: **26.**

- 14 **(1)**
- 16 (2)
- (3)15
- 19 (4)

The points A(12,8), B(-2,6) and C(6,0) are vertices of: 27.

- right angled triangle (1)
- isosceles triangle (2)

- equilateral triangle (3)
- (4) none of these

The area of the triangle with vertices points (a,b+c), (b,c+a), (c,a+b) is: 28.

(1) 0 (2) a + b + c

(3) ab + bc + ca $(4) \quad a^2 + b^2 + c^2$

	can	be bent is					.*			
•	(1)	$\frac{\pi}{2}$ cm			(2)	2π cm				
	(3)	44 cm			(4)	$(\pi + 28)$ cm			•	,
,							; · · · · ·			er a
30.	The	number of	vertices	in a cube	e is :					
. 1884	(1)	6	(2)	10	(3)	8	(4)	12		
			•							
01	nn.	1:00	1. 4	.1 .	C	1 1'	1	. 07		
31.		neter is :	petweer	the circ	umference	and radius of	a circle	e 18 37	cms,	then its
	(1)	28 cm	•		(2)	14 cm				
•	(3)	42 cm			(4)	56 cm				
	(-)							•		
							2.3	· •		4.
32.	volu	me of the r			radius of 4 cm is:	cm and an in	nternal i	radius	of 3	cm. The
32.	volu (1)	time of the r $120~ m cm^2$			radius of 4 cm is: (2)	cm and an in $220~\mathrm{cm}^2$	nternal i	radius	of 3	cm. The
32.	volu	me of the r			radius of 4 cm is:	cm and an in	nternal 1	radius	of 3	cm. The
	volu (1) (3)	tme of the r $120~ m cm^2$ $440~ m cm^2$	netal of l	ength 10	cadius of 4 cm is: (2) (4)	cm and an in 220 cm ² 225 cm ²			of 3	cm. The
	(1) (3) The	tme of the r 120 cm ² 440 cm ² volume of a	netal of l	ength 10	cadius of 4 cm is: (2) (4)	cm and an in $220~\mathrm{cm}^2$			of 3	cm. The
	(1) (3) The (1)	time of the r 120 cm^2 440 cm^2 volume of 1000 cm^3	netal of l	ength 10	radius of 4 cm is: (2) (4)	cm and an in 220 cm ² 225 cm ²			of 3	cm. The
	(1) (3) The	tme of the r 120 cm ² 440 cm ² volume of a	netal of l	ength 10	radius of 4 cm is: (2) (4)	cm and an in 220 cm ² 225 cm ² face area is 60			of 3	cm. The
	(1) (3) The (1)	time of the r 120 cm^2 440 cm^2 volume of 1000 cm^3	netal of l	ength 10	cadius of 4 cm is: (2) (4) whose sure (2)	cm and an in 220 cm ² 225 cm ² face area is 60 1200 cm ³			of 3	cm. The
33.	(1) (3) The (1) (3)	time of the r 120 cm^2 440 cm^2 volume of r 1000 cm^3 1100 cm^3	netal of l	ength 10	radius of 4 cm is: (2) (4) whose sur (2) (4)	cm and an in 220 cm ² 225 cm ² face area is 60 1200 cm ³	$00~ m cm^2is$	• · · · · · · · · · · · · · · · · · · ·		
32. 33.	(1) (3) The (1) (3)	time of the r 120 cm^2 440 cm^2 volume of r 1000 cm^3 1100 cm^3	netal of l a solid cu face area	ength 10	radius of 4 cm is: (2) (4) whose sur (2) (4)	cm and an in 220 cm ² 225 cm ² face area is 60 1200 cm ³ 900 cm ³	$00~ m cm^2is$	• · · · · · · · · · · · · · · · · · · ·		

35.		price of two chai r by Rs. 80. Find	*			80. If the price o	of a table ex	ceeds that of	a
•	(1)	Rs. 80			(2)	Rs. 130			
	(3)	Rs. 120		•	(4)	Rs. 95	•		
	<u>\</u>								
36.		$\frac{1}{2}$ the value of k	if the s	ystem o	f equ	nations $2x - y =$	1 and 3 <i>x</i> -	-ky = -1 has	a
	(1)	$\frac{2}{3}$			(2)	$\frac{3}{2}$			
X*	(3)	$-\frac{2}{3}$			(4)	All except $-\frac{3}{2}$			
*							•		
37.	The	equations $3x + 5$	y=0,5x-	3y = 0 w	ill ha	ve			
	(1)	no solution			(2)	many solutions	5		
	(3)	a solution $x = 0$	and $y = 0$		(4)	inconsistency i	n the syste	m	
•								,	
38.		he difference and number	l sum of t	he two v	whole	numbers are 3	and 39 re	spectively, fin	ıd
	(1)	22, 25	**		(2)	18, 21			
	(3)	13, 16			(4)	10, 12			
		•				. '	•		
39.	If th	ne expression x^3	$-px^2 + 11x$	c −6 is d	ivisik	ble by $(x-1)$, fin	d the value	$e ext{ of } p$	
٠,	(1)	5 (5	2) 6	1	(3)	3	(4) 0		
				•				•	
40.	Wh	ich of the followi	ng is the z	ero of th	e poly	ynomial $x^2 + 2x$	-3?		
	(1)	-1 and 3	4,		(2)	1 and –3			
	(3)	2 and 3			(4)	None of these			
. *								•	
41.	Fir	nd the side of the	square wl	nose area	a is 4	$9x^2 + 28x + 4$			
TT •	(1)	7x + 2	~q~~~~ ,,,		(2)	7x-2			
	(3)	6x + 4			(4)	9x + 3			
$\overline{\mathbf{c}}$					9			Code No.	 02

.

.

42.	In a	circle of radius 5 cm. W	hat is the distar	nce of 6 cm chord f	rom the centre?
	(1)	4 cm	(2)	3.5 cm	
	(3)	3 cm	. (4)	3.6 cm	
43.	The	tangent lines at the end	l points of a dia	meter of a circle ar	e
	(1)	Parallel	(2)	Non collinear	
	(3)	Smaller than the diam	eter (4)	None of these	
				•	
44.	Hov	v many common tangent	s can be drawn	if two circles touch	nes externally?
	(1)	One	(2)	Two	
	(3)	Four	(4)	Three	
45.	The	radii of two circles are	8 cm and 10	cm. If the length	of its common chord is
	12 d	cm. The distance between	n the centres of	these two circles is	
	(1)	13.2 cm (2) 11.7	7 cm (3)	12.9 cm (4) 14.1 cm
		•			
46.	Hov	v many tangents can be	drawn from a si	ngle point on the c	ircle?
	(1)	One (2) Two	(3)	Three (4) Infinite
47.	The	angle in the major segm	ent of a circle is	s always	
*	(1)	An acute angle	(2)	Right angle	
	(3)	An obtuse angle	(4)	None of these	
48.	An	angle subtended by a mi	nor arc of a circ	le in the alternate	segment is
	(1)	An acute angle	(2)	An obtuse angle	
	(3)	Right angle	(4)	None of these	
	`.	09	10 ·		

49.	If co	$s\theta - \sin\theta =$	$\sqrt{2}\sin heta$, th	ien $\cos \theta$ + s	$\sin heta$ is:					•
	(1)	$\sqrt{2}\cos heta$	•		(2)	$\sqrt{2}\sin\theta$	•			
	(3)	0	No		(4)	1				
.•	,	:		1.10	,	,	J T.C.L	La diata	nao hotsv	oon thoir
50.			neight 8 m ne distance				na. II t	ne dista	nce betw	een men
	. (1)	13 m			(2)	26 m				•
	(3)	10 m			(4)	12 m		•		
51.			ck 15 cm lo						nd. A pol	e casts a
	(1)	80 cm			(2)	90 cm				•
	(3)	100 cm	•		(4)	105 cm		٠.		
52.			a rectangl		more th	an its w	idth an	d its per	rimeter i	s 14 cms.
4	· (1)	$16~\mathrm{cm}^2$		· · ·	(2)	$14 \mathrm{~cm}^2$				·
	(3)	12 cm ²	-	· .	(4)	$10~\mathrm{cm}^2$	•			
53.			ve volumes		tio 1 : 2	7, then t	the rati	o of the	area of t	he face of
	(1)	1:3			(2)	1:6				
·	(3)	1:9			(4)	1:18				

- Choose the rational number which does not lie between rational numbers $\frac{3}{5}$ and $\frac{2}{3}$
 - $(1) \quad \frac{46}{75} \qquad (2) \quad \frac{47}{75}$
- $(3) \quad \frac{49}{75}$
- $(4) \quad \frac{50}{75}$

- **55.** If $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$ then the value of 'a' and 'b' is
 - (1) a = 2, b = -1

(2) a = 2, b = 1

(3) a = -2, b = 1

- (4) a = -2, b = -1
- If in an A.P. 3rd term is 18 and 7th term is 30. The sum of its seventeen terms is **56.**
 - (1)600

(2)612

(3)624

- None of these **(4)**
- Let S_n denote the sum of first n terms of an A.P. If $S_{2n} = 3S_n$, then the ratio $\frac{S_{3n}}{S_n}$ is **57.** equal to
 - (1)
- (2) 6
- (3) 8
- (4) 10
- The system of equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ will have many **58.** solutions if
 - $(1) \quad \frac{a_1}{a_2} = \frac{b_1}{b_2}$

 $(2) \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

(3) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$

None of these

59.	Two	similar triangles have				
	(1)	same shape but not necessarily	the san	ne size		•
	(2)	same ratio of lengths of any two	corres	ponding sides		•
	(3)	both (1) and (2)				y Language de la companya de la compa
•	(4)	neither of these				
60.		an goes 150 metres due east ar	nd 200 i	metres due no	rth. How far is l	he from his
	(1)	250 m (2) 300 m	(3)	350 m	(4) 225 m	
61.	If all	l the three sides of a triangle are	$e \sin \theta$, o	$\cos heta$ and 1, the	triangle is	
	(1)	right triangle	(2)	isosceles triar	ngle	i i
	(3)	equilateral triangle	(4)	none of these	•	
	(0)	equiatoral triangro	· (-/	,		
62.	Corr	responding angles are equal only	when			
5_	(1)	Transversals intersect each oth				
	(2)	Transversals intersect two par		es		
	(3)	Transversals intersect two equ				
	(4)	None of these				
	, (-)	•			* * * * * * * * * * * * * * * * * * *	
63.	If tw	wo medians of a triangle are eqú	al, then	the triangle is		
	(1)		(2)	equilateral		
	(3)	right	* (4)	isosceles		
*						
64.	Ifa	ray has its initial point on a line	e, then t	the sum of two	adjacent angles	is
U	(1)	90° always	(2)	180° always	**************************************	
	(3)	360° always	(4)	Not definite		
$\frac{}{\mathbf{c}}$	(0)		13		•	Code No. 02

		/	\ .		
65.	The value of s	$\sin B\cos (90^\circ$ -	- $B)$ + $\cos B$ s	$\sin \left(90^{\circ}-B\right)$	is:

(1) 0

(2) 1

(3) $\sin B \cos B$

 $(4) \quad 2\sin^2 B$

66. If
$$\sec \beta = x + \frac{1}{4x}$$
, then the value of $\sec \beta + \tan \beta$ is equal to:

(1) 2x

 $(2) \quad \frac{x}{2}$

(3) 3x

 $(4) \quad \frac{x}{3}$

67. If θ increases from 0° to 90° , then the value of $\cos \theta$:

(1) decreases

- (2) increases
- (3) neither increases nor decreases
- (4) none

68. The greatest value of $(\sin \alpha \cos \alpha)$ is:

(1) 1

(2) $\frac{1}{2}$

 $(3) \frac{1}{4}$

(4) 2

69. The value of
$$\sin^2 \alpha + \csc^2 \alpha$$
 is always:

(1) greater than 1

- (2) less than 1
- (3) greater than or equal to 2
- (4) equal to 2

70. The value of $\sin \theta \cdot \cos \theta$ has maximum value when θ is:

(1) 30°

(2) 45°

(3) 60°

(4) 90°

C . 15 Code No. 02

