$$(1)$$
 $\begin{pmatrix} 54 & 110 \\ -3 & -11 \end{pmatrix}$ (2) $\frac{1}{66}$ $\begin{pmatrix} -54 & -110 \\ 3 & 11 \end{pmatrix}$

(3)
$$\frac{1}{66} \begin{pmatrix} 64 & 110 \\ 3 & 11 \end{pmatrix}$$
 (4) none of these

- 5. The value of the determinant | cos a sin a 0 | -sin accos acc 0 is: (1)-1(2) 0(3)1(4) cos 2a
- 6. If cools the cube root of unity then the value of $\begin{vmatrix} 1 & \cos \cos^2 \\ \cos \cos^2 & 1 \end{vmatrix}$ will be:
- (1) ω (2) $\omega^2 + 1$ (3) 0 (4) 1
- 7. If $(1+x)^n = C_0 + c_1x + C_2x^2 + \dots + C_nx^n$, then $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{3}$ is equal to:
- (1) $\frac{2^{n}-1}{n+1}$ (2) $\frac{2^{n}-1}{n-1}$ (3) $\frac{2^{n+1}-1}{n+1}$ (4) $\frac{2^{n+1}-1}{n+1}$
- 8. If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then $C_0C_2 + C_1C_3 + C_2C_4 + \dots = C_{n-2}$ Cn is equal to:
- equal to:
 (1) 2n (2) 2n (3) 2n (4) none of these n-2 n-29. If the ratio of the second and third term in the expansion of $(a + b)^2$ is equal to the ratio of third and fourth term in the expansion of $(a + b)^{n+3}$ then the value of n is equal to:
- (2) 4 (3) 5 (4) 3 (D) 6
- 10. The number of different words that can be formed by using the letters of the word 'MISSISIPI' is:
- (1) 5067 (2) 6705 (3) 1520 (4) 2520
- 11. If a^2 , b^2 , c^2 are in A.P. then $\frac{1}{b+c^2}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ will be:
- (1) in H.P. (2) in G.P. (3) in A.P. (4) in arithmetic geometrico progression

12. A bag	coutains 5 whit	e and 3 black	balls. Two balls are drawn at random then
			all is red and other is black will be :
(1) 15			
56	28	(3) 15 28	7
13. Two di	ice are thrown	together then t	he probability that the sum of numbers
	on the dice is 7	1:	Red 5.2 (1968) 1966-1955 (1967) 1964 (1967
(i) 1	(2) 1	(3) 5	(4) none of these
6	(2) <u>1</u> 12	36	A STATE OF THE STA
			s A and B are a and b respectively then the
position ve	ector of the pol	nt C which div	ides AB in the ration 2:1 will be:
(1) <u>1+b</u> 3	(2) $2a + b$	(3) $\frac{a+2b}{3}$	(4) none of these
3	3	3	
15. If a+	b = a - b , the	en the angle be	tween a and b will be :
$(1) 180^{\circ}$	$(2) 90^{\circ}$	$(3) 60^{6}$	(4) 00
		bounded by t	the curve $y = \sin^2 x$, x-axis and the lines $x =$
$0, x = \pi t 2$	s		
(1) π	(2) π/8	(3) <u>π</u>	(4) <u>π</u>
17. π/2			
0 √√	h x d + sin 2x	x is equal to :	
(1) π		(3) <u>π</u>	4
18. xe ^x 0	fx is equal to :	ruitr	nent.Guru
(1)(x-1)e (3)(1-x)e	$\mathbf{e}_{\mathbf{x}} + \mathbf{C}$	(2) (1-x)e ³ (4) none of	these
19. x ² sin	ı x³ dx is equal	to:	
$\begin{array}{c} (1) \ \frac{1}{3} \sin \\ (3) \ \frac{1}{3} \cos \end{array}$	$x^3 + C$	$(2) - \frac{1}{2} \sin \frac{1}{2} $	$x^3 + C$
(3) 1 cos	$x^3 + C$	$(2) - \frac{1}{3} \sin \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \sin \frac{1}{3} \cos \frac{1}{3} \cos \frac{1}{3} \sin \frac{1}{3} \cos \frac{1}{3} $	$x^3 + C$
3		3	

20. The max. value of $\sin x + \cos x$:
(1) 1
(2) $\frac{1}{\sqrt{2}}$ (3) $\sqrt{2}$ (4) none of these

21. The angle between the curves y = x and $y^2 = 4x$ at origin will be :

(1)0	(2) <u>π</u>	(3) π	(4) none of these
	2	4	

22. If the volume of a balloon is increasing at the rate of 25 cm3/sec., then if the radius of the balloon is 5 cm, then the rate of change of the surface are a is :

- (1) 20 cm²/sec.
- (2) 10 mt.2/sec.
- (3) 5 cm. 2/sec.
- (4) 10 cm./sec.

23. The differential of coefficient of x1 is:

- (1) x log x
- (2) $x^x (1 + \log_e x)$ (3) $x^x (1 \log_e x)$ (4) none of these

24. d (sin x) tan x is equal to :

- (1) (sin x)^{tan x} [1 sec² x log sin x] (2) (tan x) ^{sin x} plog sec² x log sin x] (3) (sin x)^{tan x} [1+ sec² x log sin x]

- (4) none of these

25. If
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

then dy is equal to :

- $(1) \infty$
- (2) 0 (3) 1
- (4) 1

26. If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is equal to:

(1)
$$-\frac{1}{1+x^2}$$
 (2) $-\frac{2}{1+x^2}$

27. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ then $\frac{dy}{dx}$ is equal to:

(1)
$$\frac{1}{1+x^2}$$
 (2) - $\frac{1}{1+x^2}$

(3)
$$\frac{2}{(1+x)^2}$$
 (4) none of these

28. The continuous product of the roots of (-1)2/3 is :

- (1) w2
- (2) w
- (3) 0

29. The value of sin h-1 x :

(1)
$$\log (x - \sqrt{x^2 - 1})$$

(2) $\log (x + \sqrt{x^2 - 1})$

(3)
$$\log (x + \sqrt{x^2 + 1})$$
 (4) $\frac{1}{2} \log \frac{1 + x}{1 - x}$

30. The equation of a st-line passing through the point (1,2) and making equal angles to with axes, will be:

$$(1) x-y-2 = 0$$

(2)
$$x+y+1=0$$

$$(3) x-y=1$$

(3)
$$x-y=1$$
 (4) $x+y=1$

31. If the vertices of a parallelogram are (0,0), (2,1), (1,3) and (1,2) then the angle between their diagonals will be:

(3)
$$\frac{\pi}{2}$$
 (4) $\frac{\pi}{3}$

$$(4) \frac{\pi}{3}$$

32. The equation of line which is parallel to the straight line 3x + 4y - 7 = 0 and passing through (1,2) is :

$$(1) 3x + 4y = 11$$

(2)
$$3x+4y+11=0$$
 (3) $4x-3y+2=0$ (4) $3x+4y+7=0$

$$(4) 3x+4y+7=($$

33. The pole of the straight line 9x + y - 28 = 0 w.r.t. the circle $x^2 + y^2 = 16$ will be:

(1)
$$\overline{\frac{83}{7}}, \overline{\frac{3}{7}}$$

(2)
$$\frac{63}{7}$$
, $\frac{4}{7}$

$$(3)$$
 $\left(\frac{4}{7}, \frac{36}{7}\right)$

(4)
$$\frac{36}{7}$$
, $\frac{4}{7}$

34. The equation of the tangent from origin to the circle $x^2 + y^2 - 2rx - 2hy + h^2 = 0$

(1)
$$(h^2-r^2)x + 2rhy = 0$$

(2)
$$y = 0$$

(3)
$$x - y = 0$$

(4)
$$(h^2 - r^2) x - 2rhy = 0$$

(1) (h²-r²) x + 2rhy = 0 (2) y = 0 (3) x - y = 0 Cruitment. Guru

35. If a tangent at a point p to the parabola meets to the directrix at Q. If S is the focus of the parabola then ZPSO is equal to:

$$(1)\pi$$

(2)
$$\frac{\pi}{2}$$
 (3) $\frac{\pi}{3}$

36. If $f(y) = \log y$, then f(y) + f(1/y) is equal to:

$$(3)-1$$

37. $\lim_{x\to 0} \frac{\sec^x - \log(1+x)}{x^2}$ is equal to:

(1)
$$\frac{1}{2}$$
 (2) $\frac{1}{3}$ (3) $\frac{3}{2}$ (4) $\frac{2}{3}$

38. If α and β are the roots of the equation 1 $(1+n^2+n^4)=0$ then $\alpha^2+\beta^2$ is equal to:

 $(1) 2n^2$

 $(2) n^2$

 $(3) - n^2$ $(4) n^2 + 2$

39. The H.M. between 1 and 1 will be :

(1).17

(2) 2 (3) 17 (4) 32 17 17

40. If for two numbers G.M. is 4 and A.M. is 5, then H.M. will be :

(2) $\frac{17}{8}$ (3) $\frac{16}{5}$

41. If ${}^{10}C_r = {}^{10}C_{r+2}$ then 5C_r is equal to :

(1)360

(2) 120

42. The value of $1 + \underline{1} + \underline{1.3} + \underline{1.3.5} + \dots$ is:

(1) $\sqrt{(3/2)}$

(3) 2

43. If $(1+x)^n = C_0 + C_2x + C_2x^2 + ... + C_nx^n$ then $\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + ... +$

Cn-I

44. In the expansion of $\begin{bmatrix} 2^4 - \frac{1}{x^7} \end{bmatrix}$ the term independent of x is :

(1) - 32190 (2) 114050 (3) 42240 (4) 330

45. The value of the determent | 4 -6 1 | -1 -1 1 | is:

(l) 0

(2) -25 (3) 25 (4) none of these

5. If $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 6+x & 7 \end{vmatrix} = 0$, then the value of x will be:

- (1) 3
- (2) 0
- (3) 1 (4) none of these

47. If
$$A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$$
 then adj $A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$

- $\begin{pmatrix}
 \mathbf{d}_1 & \mathbf{0} & \mathbf{0} \\
 \mathbf{0} & \mathbf{d}_2 & \mathbf{0} \\
 \mathbf{0} & \mathbf{0} & \mathbf{d}_3
 \end{pmatrix}$
- $\begin{pmatrix}
 d_2 d_3 & 0 & 0 \\
 0 & d_1 d_3 & 0 \\
 0 & 0 & d_1 d_2
 \end{pmatrix}$
- $(4) \ \, \left(\begin{array}{c} d_1 d_1 & 0 & \text{cult} \\ 0 & d_2 d_3 0 \\ 0 & 0 & d_1 d_2 \end{array} \right) \ \, \text{uitment.Guru}$

48. If
$$A = \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ 0 & 5 \end{pmatrix}$, then $4A - 3B$ is equal to:

- (1) $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ (2) $\begin{pmatrix} -5 & -10 \\ 0 & 3 \end{pmatrix}$ (3) $B = \begin{pmatrix} 5 & 10 \\ 0 & -3 \end{pmatrix}$ (4) $A = \begin{pmatrix} 7 & 14 \\ 0 & 7 \end{pmatrix}$

49. If
$$A = \begin{cases} \cos x & \sin x \\ -\sin x & \cos x \end{cases}$$
, then A^{-1} is equal to:

(1)
$$\begin{pmatrix} \cos x & \sin x \\ \sin x & \cos x \end{pmatrix}$$
 (2) $\begin{pmatrix} \cos x - \sin x \\ \sin x & \cos x \end{pmatrix}$ (3) $\begin{pmatrix} \cos x \sin x \\ -\sin x \cos x \end{pmatrix}$ (4) none of these

50. A card is drawn at random from a pack of playing cards. The probability that it is red or an ace, is :

- (I) <u>L</u>
- (2) $\frac{1}{52}$ (3) $\frac{17}{52}$ (4) $\frac{4}{13}$

51. If the sum of two unit vector is also a unit vector then the magnitude of their difference will be:

- (1) 1
- (2) √3
- (3) $\frac{1}{\sqrt{3}}$ (4) $\sqrt{2}$

52. The unit vector perpendicular to the vectors 6l + 2j + 3k and 3l - 6j - 2k will be:

- (1) 2i 3j 6k (2) 2i 3j + 6k (3) 2i + 3j = 6k (4) 2i + 3j + 6k 7

53. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is

- (1) $4\pi a^2$
- (2) $3\pi a^2$ (3) $2\pi a^2$ (4) πa^2

54. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is:

(1) $\frac{5}{3}$ a^2 (2) $\frac{2}{3}$ a^2 (3) $\frac{8}{3}$ a^2 (4) $\frac{4}{3}$ a^2 55. $\cos^3 x$ dx is equal to 11111 C 111.

- $(1) \quad \frac{\sin 3x}{4} + 3\sin x + C$
- $(2) \quad \frac{\sin 3 x}{3} + \frac{\sin x}{2} + C$
- (3) sin3 x + C
- (4) $\frac{\sin 3x}{12} + \frac{3}{4} \sin x + C$

56. If x = a (t+sin t) and $y = a(1 - \cos t)$ then $\frac{dy}{dt}$ is equal to :

- (1) tan t
- (2) tan 2t (3) cot (t/2)
- (4) tan (t/2)

57. If $x = t^2$ and y = 2t, then the normal at t = 1 is:

(1)
$$x + y - 3 = 0$$
 (2)

(1) x + y - 3 = 0 (2) x + y - 1 = 0(3) x + y + 1 = 0 (4) x + y + 3 = 0

58. $f(x) = 2x^3 - 9x^2 + 12x + 29$ is a monotonic decreasing function when:

(1)
$$1 < x < 2$$
 (2) $x > 1$

(3) x > 2 (4) x < 2

59. The height of the cylinder of maximum volume that can be inscribed in a sphere of radius r is :

(2)
$$\frac{2r}{\sqrt{3}}$$
 (3) $r\sqrt{3}$ (4) $\frac{r}{\sqrt{3}}$

60. sec x dx is equal to:

(2)
$$\log \tan (x/2) + C$$

$$(3)$$
 – log (sec x – tan x) + C

(4)
$$\log \tan \left(\frac{\pi}{2} + \frac{\pi}{4}\right)^{+C}$$

61. The differential coefficient of sin-1 $\left(\frac{1-x^2}{1+x^2}\right)$ w.r.t. x is:

$$(1) - \frac{2}{1+x^2}$$
 $(2) \frac{2}{1+x^2}$

(1) -
$$\frac{2}{1+x^2}$$
 (2) $\frac{2}{1+x^2}$ (3) $\frac{1}{1+x^2}$ (4) none of these

(1)
$$\frac{1}{x\sqrt{x-1}}$$

$$(2) \quad \frac{1}{x \sqrt{x^2 - 1}}$$

$$(3) \quad \frac{1}{x\sqrt{1+x^2}}$$

$$(4)$$
 $\frac{1}{x\sqrt{1-x}}$

62. d (sec⁻¹ x) is equal to:
(1) $\frac{1}{x\sqrt{x-1}}$ (2) $\frac{1}{x\sqrt{x^2-1}}$ (3) $\frac{1}{x\sqrt{1+x^2}}$ (4) $\frac{1}{x\sqrt{1-x^2}}$ 63. The differential coefficient of tan-1 $1 + \frac{1-x^2}{1+x^2}$ w.r.t. is:

- (1) 1/2
- (2)1
- $(3) \frac{1}{2}$
- (4) none of these

64. $\lim_{x\to 0} \frac{\tan 2 x - x}{3 x - \sin x}$ is equal to :

- (1) 0
- (2) 1
- (3) 1 (4) 1

65. The differential coefficient of $\sin^{-1} x$ w.r.t. $\cos^{-1} \sqrt{1-x^2}$ is:

(1) -
$$\frac{1}{\sqrt{1+x^2}}$$

(1) -
$$\frac{1}{\sqrt{1+x^2}}$$
 (2) $\frac{1}{\sqrt{1-x^2}}$ (3) $\frac{2}{\sqrt{1-x^3}}$ (4) none of these

$$(3) \frac{2}{\sqrt{1-x^3}}$$

66. The sum of 20 terms of the series 1 + 4 + 7 + 10 + is :

(4) none of these

(3) 590

(1)290

5 = 0 is :

(1) x + y - 1 = 0

(2)490

67. Which t	terms of the	series 1, -	1 , 1-	2, Is – 128	:	
(1) 10 th	(2) 8 th	(3) 9 th	(4) 1	2 th		
68. If *P4:	$^{11}P_5 = 1:2,$	then n is equ	al to:			
(1) 2	(2) 4	(3) 5	(4) 6	6		
69. (cos 36 (cos 6)+	D-1 sin 30) -5 +1 sin 69 -4 (c	(cos 2 0)+ i si cos 0)- i sin 0	n 2 0) 4 1	s equal to :		
(1) cos 270 (2) cos 330 (3) cos 330 (4) cos 270	- i sin 33θ + i sin 33θ					
70. The val	ue of cos h-1	x is:	1	5 9		
(1) log (x -	$\sqrt{x^2-1}$	(2) log (x	$+\sqrt{x^2-1}$		1	
(3) log (x +	$\sqrt{x^2+1}$	(4) log (x	$-\sqrt{x^2+1}$		///	
	s through th		e the given	is perpendicu st-line cuts th x + by = b ²	lar to the line g te x-axis : (4) bx - ay =	a b
					current then XJ	7.
73. If two vertex will		triangle are (6,4), (2,6) :	and its centrol	d is (4, 6) then i	ts theird
(1) (6,4)	(2)	(8,4)	3) (4,8)	(4) none of	these	
74. The rad	lical axis of t	he circles $2x^2$	$+2y^2-7x$	$= 0$ and $x^2 + y$	$y^2 - 4y - 7 = 0$ is	:
(1) $8x - 7y - (3) 7x - 8y - (3)$	+14 = 0 -14 = 0		8y + 14 = 0 8y + 14 = 0			

75. The equation of the polar line w.r.t. the pole (1, -2) to the arile $x^2 + y^2 - 2x - 6y +$

(2) x + y + 1 = 0 (3) y = 2 (4) x = 2

76. The vertex of the parabola $x^2 - y + 6x + 10 = 0$ is:

77. If $f(\theta) = \tan \theta$, then the value of $f(\theta) - f(\phi)$ is: 1+f(0)f(0)

(1)
$$\theta - \phi$$
 (2) $f(\theta/\phi)$ (3) $f(\theta-\phi)$ (4) $f(\theta + \phi)$

78. $\lim_{x \to 0} \frac{x^2 - 3x + 2}{2x^2 + x - 3}$ is equal to :

(1) 0 (2) 2 (3) ½ (4)
$$\infty$$

79. $\lim_{x\to 0} \sqrt{\sqrt{1+x}-\sqrt{1-x}}$ is equal to :

80. The equation of the normal at a point of intersection of line 2x + y = 3 and curve $yx^2 + y^2 = 5$ is:

(1)
$$2x + 2y + 3 = 0$$
 (2) $x - y + 4 = 0$ (3) $x - 4y + 3 = 0$ (4) $x + y + 2 = 0$

81. If
$$f(x) = \frac{x-3}{x+1}$$
, then $f[f(f(x))]$ is equal to:

(1)
$$\frac{-1}{x}$$
 (2) $-x$ (3) $\frac{1}{x}$ (4) x

82. The modules of 1+1 is:

83. The value of
$$\frac{4\sqrt{+3}}{7} - \frac{\sqrt{+3}}{7}$$
 is

(1)
$$\frac{3\sqrt{3}}{7}$$
 (2) $\frac{3\sqrt{3}}{7}$ (3) $\frac{3\sqrt{3}}{7}$ i (4) none of these

84.
$$\frac{1-21}{2+1}$$
 + $\frac{4-1}{3+21}$ is equal to :

(1)
$$\frac{10}{13} + \frac{24}{13}i$$
 (2) $\frac{10}{13} - \frac{24}{13}i$ (3) $\frac{24}{13} - \frac{10}{13}i$ (4) $\frac{24}{13} + \frac{10}{13}i$

85. If
$$z = 5 + 31$$
 then the value of $|z - 2|$ will be:
(1) $\sqrt{13}$ (2) $2\sqrt{3}$ (3) $3\sqrt{2}$ (4) 13

		volument with the second		
86. The im:	aginary part	of <u>1-1</u> is	:	
(1) - i	(2)-1	(3) 1	(4) i	
87. If $z_1 = 1$ (1) $\frac{1}{2} - \frac{3}{2}$	i + 21 and z ₂ : (2)	= 1 – 1, then z_1/z - $\frac{1}{2} + \frac{3}{2}$	(3) $\frac{1}{2} - \frac{3}{2}i$	(4) none of these
88. The amp	plitude of 1	- √31 is:		
(1) $\frac{-2\pi}{3}$	(2) $\frac{-\pi}{3}$	(3) $\frac{2\pi}{3}$	(4) $\frac{\pi}{3}$	
89. If cand	Bare the ro	ots of the equa	$tion x^2 + px + q =$	0 then the value of $\alpha^2 + \beta^3 =$
(1) $p^3 - 3pq$	(2)	$-\left(p^{3}+3pq\right)$	(3) $p^3 + 3pq$	$(4) - p^3 + 3pq$
90. If cand	Bare the ro	ots of the equat	tion whose roots	are $\frac{1}{\alpha_{\ell}}$, $\frac{1}{\beta_{\delta}}$ is:
(1) $x^2 + x +$	1 = 0 (2)	$x^2 - x + 1 = 0$	$(3) x^2 - x = 1$	(4) $x^2 - x = 1$
91. If z = (1+1)(2+1)	then z is	equal to :	
(1) - 1/2	(2) 1/2	(3) 1	(4) - 1	
92. The slop (1) - t	e of the tang (2) – 1/t	ent to the para (3) 1/t	bola $y^2 = 4$ ax po	Int (at², 2at) will be :
93. If $a = i$: (1) - 2	2j and b = 2i (2) 2	+ 2 are the pa (3) - 4	rallel vectors the	en Als equal to :
then the rat	e of change of s of the circle	of the are when e is 10 cm, then	the radius of the	ving at the rate of 6 cm0/sec. e unite is 10 cm. at the time h its area increases is : ec. (4) 120 π cm²/sec.
95. A dice is	thrown the	n the probabilit	ty that the sum o	f the number is 1 or 6 is :
(1) 1/6	(2) 1/3	(3) 2/3	(4) 3/4	
96. The valu (1) 0	(2) 1	(3) – 1	(4) none of the	ese
97. For Z ₁ , 2 (1) 2 (Z ₁ ² +	$Z_2 \in C$ the variable $ Z_2 ^2$ (2)	alue of $ Z_1 + Z_2 $ $ Z_1 ^2 + Z_2 ^2$ (3)	$ ^2 + \mathbf{Z}_1 - \mathbf{Z}_2 ^2 \mathbf{w}$ $ \mathbf{Z}_1 ^2 + \mathbf{Z}_2 ^2 - \mathbf{Z}_1 $	III be: $- Z_2 $ (4) $2(Z_1 ^2 - Z_2 ^2)$

98. The real part of cos h (ce- if) is:

- (1) sin hα cos β
- (2) cos ha cos ß
- (3) -cos hα cos β
- (4) sin α cos β

99. If three vertices of a square are 3i, 1 + 1 and 3 + 2i then its fourth vertex will be :

- (1) (3,3)
- (2)(2,4)
- (3) aigin
- $(4) \left[\frac{1}{2}, \frac{1}{2} \right]$

100. $\lim_{x \to b} \frac{|x-b|}{x-b}$ is equal to:

- (1) 1
- (2) b
- (3)0
- (4) does not exist

ANSWER SHEET

ANST						VER SHEET				
1.(1)	2.(2)	3.(2)	4.(2)	5.(3)	6.(3)	7.(4)	8.(3)	9.(4)	10.(4)	11.(3)
12.(3)	13.(1)	14.(3)	15.(2)	16.(3)	17.(3)	18.(1)	19.(4)	20.(3)	21.(3)	22.(4)
23.(2)	24.(3)	25.(2)	26.(3)	27.(2)	28.(4)	29.(3)	30.(2)	31.(3)	32.(3)	33.(4)
34.(4)	35.(2)	36.(2)	37.(3)	38.(2)	39.(2)	40.(3)	41.(4)	42.(2)	43.(1)	44.(3)
45.(2)	46.(2)	47.(2)	48.(3)	49.(2)	50.(4)	51.(2)	52.(3)	53.(4)	54.(3)	55.(4)
56.(4)	57.(1)	58.(1)	59.(2)	60.(3)	61.(1)	62.(3)	.63.(1)	64.(4)	65.(3)	66.(3)
67.(1)	68.(4)	69.(3)	70.(2)	71.(1)	72.(3)	73.(3)	74.(3)	75.(3)	76.(4)	77.(3)
78.(3)	79.(2)	80.(3)	81.(4)	82.(4)	83.(3)	84.(2)	85.(3)	86.(2)	87.(3)	88.(2)
89.(4)	90.(1)	91.(3)	92.(3)	93.(3)	94.(4)	95.(2)	96.(3)	97.(1)	98.(2)	99.(2)
100(4)			and the same	300	19		E STATES	///		

Recruitment.Guru