

- (1) 2 amp.

- (3) 0.5 amp. (4) 1.25 amp.
- 8. Which is correct for inside charged sphere:
 - (1) $E \neq 0$, V = 0
- (2) E=0, V=0 (3) $E\neq0$, $V\neq0$ (4) E=0, V=0
- 9. The magnetic force experienced charge q in magnetic field moving with velocity V, will maximum when the angle between V and B is :
 - (1) 0°
- $(2)45^{\circ}$
- $(3) 90^{\circ}$
- (4) 180°
- 10. A parallel plate condenser is charged with a battery. After changing of the condenser battery is removed and two plates are separated from each other with the help of insulating handles, than:
 - (1) capacitance decreases
 - (2) capacitance increases
 - (3) charge on plates increases
 - (4) voltage between plates increase
- 11. The electrical flux from a semi spherical will be :

- $(1) \pi R^2 E$
- $(2) 4 \pi R^2 E$ $(3) 2\pi R^2 E$
- (4) 2πRE
- 12. In closed organ pipe the produced harmonics are :
 - (1) no harmonics is produced
 - (2) even and odd both
 - (3) odd only
 - (4) even only
- 13. In this wave equation $Y = 5 \sin 2\pi x (4t 0.02x)$ the wave velocity of wave is:
 - (1) 50 m/sec.
- (2) 150 m/sec.
- (3) 200 m/sec. (4) 100 m/sec.

() A manufactual comment by	vacuum de					
(1) wavelength	(2) freq	uency	(3) in	tensity	(4) non	e of these
15. In a coll the curr volt, the coefficie				5 sec. a	nd the in	duced enf is 8
	0.02 H		0.2 H	(4) 0.3	8 H	
16. The resistance of pass through it 0 voltmeter of 12 v	.001 A. The	value of sl				
(1) 12,100 Ω	(2) 11,9		(3) 11	190 Ω	(4) 11,9	90 Ω
17. The AC voltage is connected in the (1) $E_{mns} = \frac{E_0}{2}$						
(2) $E_{rms} = \frac{2}{\sqrt{2}}$			7			
(3) Erms = E_0	16	-		1		
(4) Erms = $\sqrt{2}$	E ₀			-	1)	
18. In wattles curren (1) π/4 (2)		ference bet (3) π	(4) ze		d voltage	ė is :
19. The ionization pe	otential of h	ydrogen is	13.6 eV.	The tot	tal energ	y of an electro
in its third orbit	will be:	(2)	1.5 aV	60 × 1	L & aM	
111 114 eV (7)	-3.4 eV		1.5 eV	(4)-	Lo ev	TYLL
1200					No 1	
(1) 3.4 eV (2) 20. In radioactive disemission of the p	s-integratio	n the eleme	ent shift l	by one p	place fur	ther after the
20. In radioactive di emission of the p (1) α-particle	s-integratio article :	n the eleme article	ent shift l	by one p	olace fur	
20. In radioactive di- emission of the p (1) α-particle 21. A metal surface of incident on the same	s-integratio earticle : (2) β-pa emitted elec ame metal s	n the eleme article strons of 3 c surface the	(3) γ- eV, when energy o	particle a light f the en	of 4 eV	(4) α,β and γ a are made to
20. In radioactive diemission of the p (1) α-particle 21. A metal surface of incident on the sign (1) 3 eV (2)	s-Integratio article : (2) β-pa emitted elec ame metal s) 4 eV	article etrons of 3 e surface the (3) 5 eV	(3) γ - eV, when energy o (4) 2	particle a light f the en	of 4 eV	(4) α,β and γ a are made to otons will be :
20. In radioactive discension of the p (1) α-particle 21. A metal surface of incident on the sign (1) 3 eV (2) 22. If for an electron in the position of	s-Integratio article: (2) β-pa emitted elec- ame metal s) 4 eV ame = 10 ⁻³¹ f electron w	in the element article strons of 3 of surface the (3) 5 eV kg., velocit ill be of the	(3) γ - eV, when energy o (4) 2 e	particle a light of the en eV m/s., h =	of 4 eV	(4) α,β and γ a are made to otons will be :
20. In radioactive diemission of the p (1) α-particle 21. A metal surface of incident on the s (1) 3 eV (2) 22. If for an electron	s-Integratio article: (2) β-pa emitted elec- ame metal s) 4 eV ame = 10 ⁻³¹ f electron w	in the element article strons of 3 of surface the (3) 5 eV kg., velocit ill be of the	(3) γ - eV, when energy o (4) 2 e	particle a light of the en eV m/s., h =	of 4 eV	(4) α,β and γ a are made to otons will be :
20. In radioactive discension of the p (1) α-particle 21. A metal surface of incident on the sign (1) 3 eV (2) 22. If for an electron in the position of	s-Integratio article: (2) β-pa emitted electame metal s) 4 eV i m _e = 10 ⁻³¹ f electron with 10 ⁻⁸ m	in the element article strons of 3 of surface the (3) 5 eV kg., velocit ill be of the (3) 10 ⁻⁶ m	(3) γ- eV, when energy o (4) 2 c ty is 10 ⁵ r order of (4) 10	particle a light f the en eV m/s., h = f:	of 4 eV	(4) α,β and γ a are made to otons will be :

(1)
$$T = 2\pi \underbrace{\sqrt{2L}}_{g}$$

(2) $T = 2\pi \underbrace{\sqrt{L}}_{g}$

(3)
$$T = 2\pi \frac{\sqrt{1L}}{2g}$$

(4)
$$T = 2\pi \frac{\sqrt{2L}}{3g}$$

25. Two masses m₁ and m₂ are attached to the ends of a string by a weight loss rod of length r₀. The MI of this system about the axis passing through the center of mass and perpendicular to its length will be:

$$\begin{pmatrix} \mu \ 0 = & \frac{m_1 \ m_2}{m_1 + m_2} \ \end{pmatrix}$$

$$(1) \ \mu_0 r_0^2 \qquad (2) \ \mu_0 r \qquad (3) \ \mu_0 r^2 \quad (4) \ \mu_1 r_0^2$$

26. The energy of monatomic gas is :

- (1) only rotational
- (2) only vibrational (3) only translatory (4) all the above
- 27. The work done in increasing the size of a bubble by 10^{-2} m² (T = 25 dyne 1 cm.)

- : (1) 0.4 x 10⁴ erg (3) 25 x 10² erg (4) 25 x 10² erg
- 28. A geostationary satellite is at a distance of 8 Re revolving around the earth and another satellite is revolving round the earth at 3.5 Re distance, its revolution period will be:
 - (1) 8.5 hrs.
- 92) 16.5 hrs. (3) 18 hrs.
- (4) 12 hrs.
- 29. The work done per unit extension in length of a wire will be (L = length, A = area of cross section):
 - (1) <u>YL</u>²
- (2) $\frac{YA}{2L^2}$ (3) $\frac{YA}{2L}$ (4) $\frac{YL}{2A}$
- 30. The total energy of a body at distance r from the earth will be :

 - (1) $\frac{Gm_em}{r}$ (2) $\frac{Gm_em}{2r}$ (3) $\frac{Gm_em}{2r}$ (4) $\frac{Gm_em}{r}$

- 31. The kinetic energy of a particle executing SHM is changed by frequency f, the frequency of its motion will be:

(4) 4f

(3) 2f

 $(2) \frac{mv^2}{4g} \qquad (3) \frac{mv^3}{4\sqrt{2g}}$

32. A body of mass m is projected at an angle 45° with velocity v from the horizontal the angular momentum acceleration at the heighest point of he

(1) f/2

(1) mv

motion will be:

(2) f

***** W//**			ne-crimines			ra de la composition		Protesta de la companya de la compa
		ly, the	change ocity inc	in the syst			lenly the	boy brings h
	(3) angu	lar velo	ocity une			1	//	
res	t. After t	he coll	ision th	/sec. Veloc e velocity ly will be:	of first bo			other body sec., the
	30 m/sec			0 m/sec.		80 m/sec.	(4) 50 m	sec.
rad	erture. W	hen of	ne incre	ases the ra	adlus of th	e aperture	, the valu	from the ne of the lned on the
ape rad ser (1)	erture. We the soft appears will to the vertical will to the vertical to the	hen of erture be: (2) of a so	ne Incre for wh √3bλ nometer	eases the ration second (3) $\sqrt{4b}$ r wire is π	adius of the dark λ (4) and tension	e aperture C point will √2nbλ n T and fr	, the valu I be obtain	ie of the
aperad ser (1)	erture. We lius of apoten will to vbλ e length of the length of the length of the length of the length and the length and the length of the l	(2) of a some	ne Incre for wh √3bλ nometer i on son	eases the ration second (3) $\sqrt{4b}$ r wire is π	adius of the lime dark λ (4) and tension re are doubters.	e aperture c point will √2nbλ n T and fr bled the fr	, the valu I be obtain	ie of the ined on the is n. If the
aperad ser (1) 37. The len (1) 38. Tw figg of c	erture. We thus of appear will to vbλ elength of the true of forks of the true. If the true of tr	(2) of a sortension (2) of apprinc Liss	ne incree for where $\sqrt{3b\lambda}$ nometer is on son $\frac{n}{2}$ roximates alous fing fork is	ases the railch second (3) $\sqrt{4b}$ r wire is to ometer with (3) $\sqrt{2n}$ ely equal fi	adius of the time dari λ (4) and tension re are dou (4) requencies ges its sha , the frequency	e aperture point will $\sqrt{2}$ nb λ In T and from the following the fo	equency requency to product 1 sec. If to	ie of the ined on the is n. If the will become ce Lissajou the frequenc

- 40. If charge O is placed at the center of a cube, the emergent flux from one of the face of the cube will be:
 - (1) O $2\varepsilon_0$
- (3) Q
- 41. Two equal charges each of value q are placed on a straight line, another charge O is placed at mid of the distance between the system will be most stable is :
- (3) + q
- (4) q
- 42. An electron passes through an electric field 3200 v/m, of length 0.1 m, with speed 4 x 10' m/sec. The deflection produced in the path of electron will be :
 - (1) 3.52 mm.
- (2) 1.35 mm. (3) 0.88 mm.
- (4) 1.76 mm.
- 43. A rectangular coil placed in a magnetic field 0.25 T. The area of coil is 96 x 10-4 m2, no, of turns are 50 and current is 2A, the torque experienced by the coll will be:

- 44. If two charged conductors are short circuited by a wire, the current will now flow:
 - (1) sizes are equal
 - (2) capacitances are equal
 - (3) charges are equal
 - (4) potential are equal
- 45. Two coils X and Y are placed near to other according to the figure. If current is passed through X, the direction of induced current in Y will be:

(2) 10³ M (3) 10⁴ M (4) 10² M

(1) 105 M

55. Four bodies solid sphere, solid cylinder, disc and ring have same mass and same cross sectional area, the MI about the axis shown by a point in the figur
will be max. for the body (the axis is perpendicular to the plane of the bodies)
will be max, for the body (the axis is perpendicular to the plane of the bodies) $\leftarrow 2r \rightarrow \qquad \leftarrow 2r \rightarrow \qquad \leftarrow 2r \rightarrow \qquad \leftarrow 2r \rightarrow$
(-21-) (-21-) (-21-)
· · · · ·
(1) only disc (2) sphere and ring
(3) disc and cylinder (4) only ring
56. A cylinder rools down the inclined plane of length 0.15 m. If the mass of
cylinder is 0.1 kg. The velocity at the bottom of the inclined plane will be:
(1) 3.5 m/sec. (2) 2 m/sec. (3) 1.4 m/sec. (4) 2.4 m/sec.
57, A stopper is attached in the middle of glass tube. Two bubbles of radius 2 cm
and 4 cm. are formed at the end of the glass tube. If one opens the stopper:
(1) small bubble will reduce and large will increase
(2) both will increase
(3) both will reduce
(4) small will increase and large will reduce
(4) sman win increase and range win reduce
70 1 700 15 11 11 11 11 11 11 11 11 11 11 11 11
58. A 500 μE capacitor is charged with a battery of 100 volt and it is discharged
through 10 @resistance the heat produced in resistance will be:
(1) 1.25 J (2) 5 J (3) 10 J (4) 2.5 J
59. Two condensers of 1 μE are connected in series with a battery of 6 volt, the
total charge on condensers will be :
(1) 2 μC (2) 2.5 μC (3) 9 μC (4) 4 μC
60. Transformer changes :
(1) DC current (2) DC voltage (3) AC voltage (4) AC & DC voltage
61. Lenzis law is based upon :
(1) law of conservation of energy
(2) law of conservation of angular momentum
(3) law of conservation of momentum
(4) law of conservation of charge
(4) law of conservation of charge
62. Two thin wires are separated by distance r and parallel to each other. If the
current in each wire is I, the force per unit length experienced by one wire di
to current in the other will be :
(1) $\mu_0 I^2$ (2) $\mu_0 I^2$ (3) $\mu_0 I$ (4) $\mu_0 I^2$
$2\pi r^2$ $4\pi r$ 2π $2\pi r$

- 63. The relation between current and maximum current Im at half power points in resonant circuit will be :
 - (1) $I = \underline{I}_{\underline{m}}$ (2) $I = I_{\underline{m}} \sqrt{2}$ (3) $I = \underline{I}_{\underline{m}}$ (4) $I = \underline{I}_{\underline{m}}$
- 64. In LCR circuit the voltage and current are given by the equations: E= E0 sin cot and I = In (cot - on) than which statement is correct :
- (1) $\cos \phi = \frac{R}{\left[\omega L \frac{1}{C\omega}\right]}$
- (2) $\sin \phi = \left[\omega L \frac{1}{C\omega}\right]$
- (3) $\tan \phi = \underbrace{CL \frac{1}{C\omega}}_{R}$
- (4) $\tan \phi = \frac{\omega L}{R}$
- 65. The potential due to electric dipole a point is :

- (1) K $\begin{pmatrix} \overrightarrow{p} + \overrightarrow{r} \\ \overrightarrow{r^3} \end{pmatrix}$ (2) K $\begin{pmatrix} \overrightarrow{p} + \overrightarrow{r} \\ \overrightarrow{r^3} \end{pmatrix}$ Recruitment. Guru (3) K $\begin{pmatrix} \overrightarrow{p} \overrightarrow{r} \\ \overrightarrow{r^3} \end{pmatrix}$ (4) K $\begin{pmatrix} \overrightarrow{p} \overrightarrow{r} \\ \overrightarrow{r^3} \end{pmatrix}$

- 66. The magnetic field due to a current carrying wire element will be maximum when the angle between the current element and position vector is :
- (2) $\pi/4$
- $(3)\pi$
- (4) zero
- 67. A straight current carrying wire and loop are placed according to the figure. If the current is according to the figure :

(1) loop will move towards the wire

sec. the current	produced in resistance		2in a.c. c	ircuit is 250 wa
(1) 0.5 amp. (2)	44, 44, 44, 44, 44, 44, 44, 44, 44, 44,	11 11 11 11 11 11	.25 amp.	
69. The mean life of				
(1) $\frac{1}{\sqrt{\lambda}}$ (2)	$\sqrt{\lambda}$ (3) $\frac{1}{\lambda}$	λ (4) 1		
70. The half life of a substance will re	radioactive subsiduce is 150 days	stance is 25 da s to :	ys. The	25 gm. sample
(1) 0.375 gm.	(2) 0.75 gm.	(3) 1.5 gm.	(4) 4 g	ţm.
71. The wavelengths their momentum	will be :	51002KUW	Section of the section of	ting the state of
(1) 1 : 1	(2) 2 : 1	(3) 1 : 3	(4) 1	3
 (3) φ = bindin (4) φ = bindin 	ig energy – fermi ig energy	energy		
73. If the pressure of sound in the gas	becomes :		S- 11	UUI
73. If the pressure of	a gas is doubled becomes: (2) $\sqrt{2}$ times		S- 11	(4) double
73. If the pressure of sound in the gas (1) unchanged 74. In black body radincrease of temporal (1) at some temporal (2) towards hi	becomes: (2) $\sqrt{2}$ times	(3) h Imum emissio body : ter side and oth	alf n the wa	(4) double
73. If the pressure of sound in the gas (1) unchanged 74. In black body raincrease of tempo (1) at some ter (2) towards hi (3) towards sh	diations for max erature of black mp. towards short gher wavelength orter wavelength	(3) h Imum emissio body: ter side and oth	alf n the wa	(4) double velength 2 shi
73. If the pressure of sound in the gas (1) unchanged 74. In black body raincrease of tempo (1) at some ter (2) towards hi (3) towards sh (4) no shift 75. If the temp. of a light sound in the sound	diations for max rature of black mp. towards short gher wavelength order wavelength body is make am (2) half	(3) h imum emissio body: ter side and off nount of radia (3) two time	alf n the wa	(4) double velength 2 shi rds longer side gy will become: (4) four times

(1) 1000.25 J			
(1)	(2) - 1245 J	(3) -928.75 J	(4) -622.5 J
78. The absence of at	mosphere on the	surface of any plane	t is :
(1) V _{tms} is grea	iter than escape ve	locity	
(2) Average ki on the plan	netic energy gas m et	olecules is negligible	to the gravitational force
(3) V _{rms} less th (4) None	an escape velocity		
	sec. If the no. of n	nolecule is 3 x 10 ⁻²⁷ k nolecules in the cont	g. and velocity of liner is 10 ²⁴ , the
pressure will be :			740 A 404 CT
(1) 100 N/m ²	(2) 10 N/m ²	(3) 1 N/m ²	(4) 0.5 N/m ²
			nergy of system is du
		t relation between a	
(1) $\Delta Q = \Delta W - dU$	(2) dU=ΔQ-Δ\	$W = \Delta Q - \Delta Q$	-dU (4) ΔW=ΔQ-dl
81. Absorption coeffi	cient of an ideal l	olackbody is :	
(1) less then 1	(2) 1	(3) zero (4) in	finity
82. The V ^{rms} of O2 at	270 C is V on the	same temp. the Vrn	is of atomic oxygen is
V! than		ALTERNATION OF THE PROPERTY OF THE PARTY OF	
(1) $V' = V$	(2) V'= V	(3) $V' = \frac{V}{2}$	(4) $V' = \sqrt{2} V$
	1	2	
2	1 1/2	_	
83. If one gm. of water	er at 1000 C conv	erted into vapour of	1000 C the external
	er at 1000 C conve process will be :	erted into vapour of	
83. If one gm. of wate work done in this (1) 2100 watt	er at 1000 C convergences will be: (2) 2100 erg	(3) 2100 J ght velocity:	(4) 2100 cal
83. If one gm. of wate work done in this (1) 2100 watt	er at 1000 C convergences will be: (2) 2100 erg	erted into vapour of	(4) 2100 cal
83. If one gm. of wate work done in this (1) 2100 watt 84. Of which the velo (1) cathode ray 85. In young double s mm. the distance	er at 1000 C convergences will be : (2) 2100 erg city is equal to lig (2) X-rays	(3) 2100 J tht velocity: (3) positive ray e two coherent source	(4) 2100 cal (4) all ess are separated by 2
83. If one gm. of wate work done in this (1) 2100 watt 84. Of which the velo (1) cathode ray	er at 1000 C convergences will be: (2) 2100 erg city is equal to lig (2) X-rays slit experiment the	(3) 2100 J tht velocity: (3) positive ray e two coherent source	(4) 2100 cal (4) all tes are separated by 2 0.03 cm, the wavelengt
83. If one gm. of wate work done in this (1) 2100 watt 84. Of which the velo (1) cathode ray 85. In young double s mm. the distance of light will be: (1) 6000 Å 86. The horns of two car is moving tow	er at 1000 C convergences will be: (2) 2100 erg city is equal to lig (2) X-rays silt experiment the of screen is 1m. If (2) 5890 Å cars emit the sourards one observer will the observer will th	(3) 2100 J (3) 2100 J (4) 2100 J (5) positive ray (6) positive ray (7) the fringe width is (8) 5000 Å (9) nd of natural frequency with velocity 4 m/s (1) the same velocity.	(4) 2100 cal (4) all tes are separated by 2 0.03 cm, the wavelength

88. 1 amu is equal to:

(1) 931 MeV (2) 931 eV (3) 9.30 eV (4) 931 KeV 89. 1 amp. current flow is a circuit when a cellisconnected to 1 \(\Omega\) resistance and 0.5 amp. to a 3 @resistance. The internal resistance of cell is : (2) 1.0Ω (3) 1.5 Ω $(4) 0.5 \Omega$ $(1)2\Omega$ 90. Function of a grid in a triode is : (1) to increase plate voltage (2) to decrease plate voltage (3) to reduce the effect of space charge (4) None 91. If $r_p = 3 \times 10^3$ 2 and $g_m = 20$ m. mho if triode is used as an amplifier and $R_L = 6$ k@ then voltage amplification is : (1)40(2)60(3).20(4).3092. Ge at absolute temp is a : (1) super cond. (2) conductor (3) semi conductor (4) insulator ANSWER SHEET 1.(4) 2.(4) 3.(4) 4.(4) 5.(3) 6.(2)7.(3) 8.(4) 9.(3) 10.(1) 11.(1) 20.(2)21.(3) 22.(2) 12.(3)13.(3) 14.(4) 15.(3) 16.(2) 17.(2)18.(2)19.(4) 29.(1) 32.(3) 33.(4) 23.(1) 24.(4) 25.(3) 26.(3) 27.(2) 28.(2) 30.(2)31.(1)34.(1) 37.(4) 40.(3) 35.(3) 36.(3) 38.(4) 39.(1) 41.(4) 42.(4)43.(1) 44.(4) 45.(3) 46.(2) 47.(4) 48.(2) 49.(2) 50.(2) 51.(1) 52.(4)53.(2)54.(3) 55.(1) 56.(3) 57.(1) 58.(4) 59.(1) 60.(3) 61.(1) 62.(4)63.(4)64.(3) 65.(4) 66.(1) 74.(3) 75.(1) 67.(2)68.(3)69.(3) 70.(1)71.(1) 72.(4)73.(1)76.(2) 77.(2) 83.(3) 84.(2) 85.(1) 86.(2) 78.(1)79.(3) 80.(4) 81.(2) 82.(4) 87.(3) 89.(2) 90.(1) 91.(1) 92.(4)