## Pavzi Media - http://www.pavzi.com

## Pavzi Media

## Polycet-2016

## English Medium

Model Paper for Mathematics

1. 1 is a (an)
1) Natural number but not a real number
2) Integer and also an irrational number
3) Rational number as well as a real number
4) Real number but not a whole number
2. Among the following, neither a prime number nor a composite number is
1) 81
2) 9
3) 27
4) 243
5. A rational number in the following is
1) $\pi$
2) $e$
3) $\log _{3} 2$
4) $22 / 7$
5) 0
6) 2
7) 3
8) 1

## 3. Every integer is a (an)

1) Natural number
6. A rational number that does not lie between 0 and 1 is
1) $1 / 2$
2) $2 / 3$
3) $3 / 4$
4) $4 / 3$
5) Whole number
6) Irrational number
7) Real number

## 4. The $4^{\text {th }}$ power of 3 is

1) 225
2) $225 / 10^{4}$
3) $225 / 10^{2}$
 Entrance Tests Previous Question Papers along Answers Keys for getting Best Score at all exams - www.pavzi.com
4) $9 / 40$
5) Orange trees in the garden

## 9. Between any two natural numbers there exist infinitely many

1) Natural numbers
2) Whole numbers
3) Integers
4) Real numbers
10. The number of prime factors of 72 is
1) 12
2) 2
3) 3
4) 6
11. How many prime factors are there in the prime factorization of 240?
1) 20
2) 5
3) 3
4) 6
12. 0.12112111211112 $\qquad$
1) Irrational number
2) Rational number
3) Composite number
4) Prime number
15. Set theory was proposed by
1) Cantor
2) Boolae
3) Pythagoras
4) Newton
16. Generally set is defined by the following letter.
1) $x$
2) $q$
3) $x$
4) $m$
17. W-\{0\}
1) $N$
2) C
3) $R$
4) $Q$
18. The set formed from the letters of the word "SCHOOL" is
1) $\{S, C, H, O, O, L\}$
2) $\{S, C, H, L\}$
3) $\{S, C, H, O, L\}$
4) None
13. A composite number among the following
1) 1
2) 2
3) 3
4) 4
19. $\varnothing \pm$
1) $\forall$
2) $\exists$
3) $\mu$
4) $\varnothing$

## 14. Among the following constitutes "well defined

 objects" is1) Beautiful girls
2) Good news papers
3) Tall boys
20. M aximum number of elements in a single ton set is
1) 0
2) 8
3) $(\mathrm{m}, 0)$
4) 1
5) $(m, m)$
6) 4
7) $(0,0)$
21. If $I$ and $m$ are two straight lines such that $I \cap m=\varnothing$, then $I$ and $m$ are $\qquad$ lines.
1) Parallel
2) Perpendicular
3) Intersecting
4) Same

## 22. Identify monomial.

1) $x^{2}-2$
2) $x+2$
3) $2 x$
4) None
23. Maximum number of terms in binomial is
1) 1
2) 3
3) 4
4) 2

## 24. $4 x+2$ is a

1) Linear polynomial
2) Quadratic polynomial
3) Cubic polynomial
4) Biquadratic polynomial

## 25. A polynomial of degree three is called

1) A linear polynomial
2) A quadratic polynomial
3) A cubic polynomial
4) A biquadratic polynomial
26. The vertex of the parabola $y=m x^{2}$ is
1) $(0, \mathrm{~m})$
27. The graph of $x=y^{2}$ lies in the quadrants. $\qquad$
1) $Q_{1}, Q_{2}$
2) $Q_{1}, Q_{3}$
3) $Q_{2}, Q_{4}$
4) $Q_{1}, Q_{4}$
28. When $4 x^{2}-8 x+3$ is divided by $\qquad$ the remainder is 24 .
1) $2 x+1$
2) $2 x-1$
3) $2 x+3$
4) $2 x-3$
29. Condition of one root of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ to be the reciprocal of the other is
1) $b+c=0$
2) $a=c$
3) $a+c=b$
4) $a+b+c=0$
30. If $p$ and $q$ are unequal and $x^{2}+p x+q$ and $x^{2}+q x+p$ have a common factor, then
1) $\mathrm{p}-\mathrm{q}+1=0$
2) $p+q+1=0$
3) $p+q-1=0$
4) $\mathrm{p}-\mathrm{q}-1=0$

## 31. Which of the following equations is not a linear equation?

1) $5+4 x=y+3$
2) $x+2 y=y-x$
3) $3-x=y^{2}+4$
4) $x+y=0$

## Pavzi Media pavi Model Papers Doumload with Suwy Matereid forall competitive Eams sand

 Entrance Tests Previous Question Papers along Answers Keys for getting Best Score at all exams - www.pavzi.com3) 3
4) -3
32. Identify open sentence.
1) $x+y=7$
2) $3 x$
3) $x / 12$
4) None
38. If $5 \mathrm{x}^{2}-\mathrm{kx}+11=0$ has a root $\mathrm{x}=3$, then $\mathrm{k}=$
1) $16 / 3$
2) $56 / 3$
3) $-17 / 3$
4) 15
39. The roots of $5 x^{2}-x+1=0$ are
1) Real and equal
2) Real and unequal
3) Imaginary
4) None
34. $x=2$ and $y=1$ is a solution to
1) $3 x-2 y=4$
2) $6 x-4 y=7$
3) $x+y=1$
4) None
40. If the equation $x^{2}-k x+1=0$ has equal roots, then
1) $k=1$
2) $k=-1$
3) $k=2$
4) $k=-4$
35. If a pair of linear equations in two variables is consistent, then the lines represented by two equations are
1) Intersecting
2) Parallel
3) Always coincident
4) Intersecting or coincident
41. The nature of the roots of quadratic equation $3 x^{2}+x$ $+8=0$ is $\qquad$
1) Real and distinct
2) Real and equal
3) Imaginary
4) None
42. Sum of the roots of $a x^{2}+b x+c=0$ is
1) $c / a$
2) $b / a$
3) $a / b$
4) None
37. If $x-y=1$ and $2 x+y=8$ then $y=$
1) 2
2) -2
43. Product of the roots of $a x^{2}+b x+c=0$ is
1) $\mathrm{c} / \mathrm{a}$
 Entrance Tests Previous Question Papers along Answers Keys for getting Best Score at all exams - www.pavzi.com

| 2) | $-b / a$ |
| :--- | :--- |
| 3) | $-c / a$ |
| 4) | None |

44. The largest number which divides 77, 147 and 252 to leave the same remainder in each case is.
1) 25
2) 35
3) 9
4) 15
45. If $K+2,4 k-6$ and $3 k-2$ are the consecutive term of an arithmetic progression, then $\mathrm{K}=$
1) 3
2) 0
3) 2
4) 1
46. $51+52+53+$ $\qquad$ $.100=$
1) 1275
2) 6325
3) 5050
4) 3775
47. If $a, b, c$ are in A.P. ...... are in G.P.
1) $a^{a}, b^{b}, c^{c}$
2) $a^{c}, b^{a}, c^{b}$
3) $a^{b}, b^{c}, c^{a}$
4) $a^{a}, a^{b}, a^{c}$
48. If the sum of the first $\mathbf{1 5}$ terms and the sum of the first 10 terms of an arithmetic progression are - 15 and 5 respectively, the sum of the first 5 terms is
1) 20
2) -20
3) -10
4) 10
49. The general term of the series $x-5 a, x-2 a, x+a, x+$ $4 a$. $\qquad$ is
1) $x-8 a$
2) $x+3(n-8 / 3) a$
3) $x+3(n-1) a$
4) $x+3 n a-2 a$
50. Pair of perpendicular lines among the following is :
1) $2 x+3 y=5 ; 3 x-2 y=9$
2) $2 x+3 y=5 ;-3 x-2 y=9$
3) $2 x+3 y=5 ; 2 x+3 y=9$
4) $2 x+3 y=5 ; 3 x+2 y=9$
51. The point $R(4,24)$ divides the line segment $P(2,27)$, $\mathrm{Q}(10,15)$ in the ratio.
1) $4: 1$
2) $3: 2$
3) $2: 3$
4) $1: 3$
52. The slope of perpendicular to the line $5 x-3 y+4=0$ is
1) $3 / 5$
2) $-3 / 5$
3) $-5 / 3$
4) $5 / 3$
53. The points $A(-4,-1), B(-2,-4), C(4,0)$ and $D(2,3$ ) are the vertices of
1) Parallelogram
2) Rectangle
3) Rhombus
4) Square
54. The area of the triangle whose vertices are ( 1,3 ), ( 2 , 4 ) and (5, 6 )
1) $-1 / 2$
2) $1 / 2$
3) 2
4) $1 / 3$
55. Two vertices of vertices of a triangle are (-4, 6), (2, -2). If its centre of gravity $(G)$ is $(0,3)$ its third vertex is
1) $(4,-6)$
2) $(-2,2)$
3) $(-2,5)$
4) $(2,5)$
56. Among the following the similar figures are
1) Squares
2) Circles
3) Equilateral triangles
4) All
60. $36^{0}$ is. $\qquad$ .angle.
1) Obtuse
2) Reflex
3) Straight
4) Acute
61. If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar, the property is
1) $A A A$
2) $S S S$
3) SAS
4) None

## 62. Number of chords of a circle is

1) 10
2) 19
3) 2015
4) Infinite
5) Point
6) Shape
7) Size
8) None
63. Angle in a semicircle is

| 1) | $90^{\circ}$ |
| :--- | :--- |
| 2) | $60^{\circ}$ |
| 3) | $70^{\circ}$ |
| 4) | None |

64. Area of circle is. .sq. units.
1) $\pi r$
2) $\pi r^{2}$
3) $\pi+r$
4) $r / \pi$
as. $\qquad$ ..theorem.
5) Thale's
6) Coordinate
7) Similar
8) None
65. If a parallelogram is cyclic, then it is
1) A rectangle
2) A quadrilateral
3) A rhombus
4) A square
5) 2 times
6) 3 times
7) 4 times
8) 8 times
66. If a trapezium is cyclic, then
1) Its parallel sides are equal
2) Its non-parallel sides are equal
3) Its diagonals are not equal
4) None of the above
67. The angles subtended by major arc at the centre is
1) $<90^{\circ}$
2) $>90^{\circ}$
3) $<180^{\circ}$
4) $>180^{\circ}$
68. If the radii of a circle is doubled, then its area becomes.......times.
1) 2
2) 3
3) 4
4) 5
72. The volume of a cone is $462 \mathrm{~cm}^{3}$, base radius is 7 cm , then $\mathrm{h}=$
1) 9 cm
2) 8 cm
3) 7 cm
4) 6 cm
73. A cube of a metal of 5 cm edge is melted and casted into a cuboid whose base is 2.5 cm * 0.5 m , then height of the cuboid is
1) 100 cm
2) 10 cm
3) 1000 cm
4) 10000 cm
74. A cone and a hemisphere have equal bases and equal volumes. Then the ratio of their heights is
1) $1: 2$
2) $3: 1$
3) $1: 3$
4) $2: 1$
75. $\operatorname{Sec}(90+\theta)=$
1) $-\sec \theta$
2) $\operatorname{cosec} \theta$
3) $\sec \theta$
4) $-\operatorname{cosec} \theta$
5) 1464
6) 2464
7) 3464
8) 4464
71. If the edge of a cube is doubled, then the new volume will be
1) $3: 2$
2) $27: 8$
3) $8: 27$
4) $4: 9$
70. The surface area of a sphere of radius 14 cms in sq.cms is
4) $\pi / 3$
77. The minutes hand of a clock is 3 cm long. How far does its tip move in 29 minutes?
1) 9 cm
2) 10 cm
3) 22 cm
4) $44 / 7 \mathrm{~cm}$
78. $\operatorname{Sin} 110^{\circ}=$ $\qquad$

| 1) | $\operatorname{Sin} 20^{\circ}$ |
| :--- | :--- |
| 2) | $\operatorname{Sin}-20^{\circ}$ |
| 3) | $\operatorname{Sin} 70^{\circ}$ |
| 4) | $\operatorname{Cos} 70^{\circ}$ |

79. $\operatorname{Cos} 1^{\circ} \cdot \operatorname{Cos} 2^{0} \cdot \operatorname{Cos} 3^{0}$ $\qquad$ Cos
$30^{\circ}$ $\qquad$ $\operatorname{Cos} 93^{\circ}=$
1) 0
2) 1
3) $\sqrt{3}$
4) $1 / 2$
0. 1 radian =
1) $56^{0} 18^{\prime}$
2) $57^{0} 16^{\prime}$
3) $56^{\circ} 15^{\prime}$
4) $45^{\circ} 40^{\prime}$
81. A ladder 19 mts leaning to wall at $60^{\circ}$, with ground, the distance from foot to the wall is
1) 18 m
2) 19 m
3) 9 m
4) 9.5 m
82. A kite is flying in the sky with a thread of 68mts and making an angle $0^{\circ}$. If $\tan \theta=15 / 8$, then find the height of the kite above the ground (mts)
1) 50
2) 60
3) 70
4) 80
83. The tops of two poles of heights 20 m and 14 m are connected by a wire. If the wire makes an angle of $30^{\circ}$ with the horizontal, the length of the wire in metres in between two poles is
1) 8
2) 10
3) 12
4) 14
84. From the top of a minar of height 60 mts , the top and bottom of a clock tower are observed at the angles of depression of $30^{\circ}$ and $60^{\circ}$ respectively. Then the height of the clock tower in metres is
1) 40
2) 50
3) 60
4) 20
85. The angle of elevation of the top of the tower from a point 60 m from its foot is $30^{\circ}$. The height of the tower is
1) $30 \sqrt{3} \mathrm{~m}$
2) 30 m
3) 60 m
4) $20 \sqrt{3} \mathrm{~m}$
86. Two fair dice are rolled and the face values are added. The probability of getting an odd number greater than 8 is.
1) $2 / 9$
2) $1 / 6$
3) $1 / 4$
4) $1 / 9$
87. If a coin is tossed 1000 times getting head 455 times and getting tail 545 times, then the probability of getting a head is
1) 0.455
2) 0.545
3) 1
4) 0.5
88. The probability of getting even number is
1) $150 / 1000$
2) $489 / 1000$
3) $190 / 1000$
4) $200 / 1000$

## 92. Likes Statistics =

1) $9 / 40$
2) $27 / 40$
3) $18 / 40$
4) $36 / 40$
93. One number is selected from the four digit numbers that can be formed from the digits $1,2,3,4,5,6,7$. The probability that it is divisible by 5 is
1) $4 / 7$
2) $2 / 5$
3) $7 / 16$
4) $1 / 16$
94. M ode of the scores 7, $9,11,13,15,17,19$
is...
1) 13.5
2) 14
3) No mode
4) 13
95. If all the deviations of the scores in a data are taken from the arithmetic mean, then the sum of deviations is. $\qquad$
1) A.M.
2) $\infty$
3) 1
4) 0
96. The Mean and Mode of a uni modal data are 32 and 29 respectively. Then the Median is. $\qquad$
1) 29.5
2) 30
3) 30.5
4) 31
5) $1 / 5$
6) $3 / 5$
7) $4 / 5$
91. Ten cards numbered $1,2,3$, $\qquad$ .10 are kept in a box. If a card is taken at random, then the probability that the card drawn is a prime number is
1) $2 / 5$
2) $1 / 9$
3) $1 / 10$
4) $1 / 5$
5) $2 / 5$

## Pavzi Media - http:// www.pavzi.com

## 97. The range of $20,18,37,42,3,15,15,26$ is

1) 8
2) 22
3) 39
4) 42
98. Find the mode when median is 125.6 and mean is
99. 
1) 120
2) 120.8
3) 125
4) 128
99. The mean of 20 measurements was calculated to be 56 cm . But it was found that one of the measurements was recorded as $\mathbf{6 4 c m}$., instead of 61 cm . The correct mean will be (in cm .)
1) 53
2) 54.5
3) 56.15
4) 55.85
100. If between two numbers the A.M. is $\mathbf{2 5}$, the H.M. is 9
then the G.M. is
1) 17
2) 8
3) 15
4) 225
