

Subject :: Chemistry

Q. No. 1 0021001	In which mode of expression, the concentration of a solution remains independent of temperature?
Option A	Molarity
Option B	Normality
Option C	Formality
Option D	Molality
Correct Option	D

Q. No. 2 0021002	A mixture of x containing 0.02 mol of $[Co(NH_3)_5 SO_4]Br and 0.02 mol of$ $[Co(NH_3)_5 Br] SO_4$ was prepared in 2L of solution. 1L of mixture X + excess AgNO ₃ \longrightarrow Y 1L of mixture X + excess BaCl ₂ \longrightarrow Z The number of moles of Y and Z are
Option A	0.01, 0.01
Option B	0.02, 0.01
Option C	0.01,0.02
Option D	0.02, 0.02
Correct Option	Α

Q. No. 3 0021003	The equivalent weight of $MnSO_4$ is half its molecular weight when it is converted to
Option A	Mn ₂ O ₃
Option B	MnO ₂
Option C	MnO ₄ ¹⁻
Option D	MnO ₄ ²⁻
Correct Option	В

Q. No. 4 0021004	For the redox reaction $xMnO_4^{1-} + yC_2O_4^{2-} + zH^{1+} \rightarrow Mn^{2+} + CO_2 + H_2O$ the coefficients x,y,z are
Option A	2, 5, 16
Option B	16, 5, 2
Option C	5, 16, 2
Option D	2, 16, 5
Correct Option	Α

Q. No. 5 0021005 Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's

	salt required per mole of dichromate is
Option A	3
Option B	4
Option C	5
Option D	6
Correct Option	D
Q. No. 6 0021006	The volume strength of 1.5 N H_2O_2 solution is
Option A	4.8
Option B	8.4
Option C	3.0
Option D	8.0
Correct Option	В
Q. No. 7 0021007	The number of nodal planes in a p _x orbital is
Option A	One
Option B	Тwo
Option C	Three
Option D	Four
Correct Option	Α
Q. No. 8 0021008	Which of the following has maximum number of unpaired electrons?
Option A	Mg ⁺²
Option B	Ti ⁺³
Option C	V ⁺³
Option D	Fe ⁺²
Correct Option	D
Q. No. 9 0021009	X mL of H_2 gas effuses through a hole in a container in 5 seconds. The time taken for the effusion of the same volume of the gas specified below, under identical conditions, is
Option A	10s, He
Option B	20s, 0 ₂
Option C	25s, CO
Option D	55s, CO ₂
Correct Option	В
Q. No. 10 0021010	For an endothermic reaction where ΔH represents the enthalpy of the reaction in KJ mol ⁻¹ , the minimum value for the energy of activation will be

Option A	Less than Δ H
Option B	Zero
Option C	More than Δ H
Option D	Equal to Δ H
Correct Option	c
Q. No. 11 0021011	A monoatomic ideal gas undergoes a process in which the ratio of P to V at any instant is constant and equals 1. What is the molar heat capacity of the gas?
Option A	4R/2
Option B	3R/2
Option C	5R/2
Option D	0
Correct Option	Α
Q. No. 12 0021012	For the reaction, $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$, if $K_P = K_C(RT)^x$ where the symbols have usual meaning then the value of x is : (assuming ideality)
Option A	1/2
Option B	1
Option C	-1
Option D	-1/2
Correct Option	D
Q. No. 13 0021013	Pure ammonia is placed in a vessel at a temperature where its dissociation constant (lpha) is appreciable. At equilibrium,
Option A	KP does not change significantly with pressure.
Option B	α does not change with pressure.
Option C	The concentration of NH_3 does not change with pressure.
Option D	The concentration of hydrogen is less than that of nitrogen.
Correct Option	Α
Q. No. 14 0021014	The pH value of 10 ⁻⁸ M solution of HCl in water is
Option A	8
Option B	-8
Option C	Between 7 and 8
Option D	Between 6 and 7
Correct	D

Q. No. 15 0021015	For a sparingly soluble salt $A_p B_{q\prime}$ the relationship of its solubility product (L_S) with its solubility(S) is
Option A	$L_{S} = S^{p+q} p^{p}q^{q}$
Option B	$L_{S}=S^{p+q} p^{q}q^{p}$
Option C	$L_{S} = S^{pq} p^{p} q^{q}$
Option D	$L_{S} = S^{pq}(pq)^{(p+q)}$
Correct Option	Α
Q. No. 16 0021016	In a solid AB having the NaCl structure, A atom occupies the corners of the cubic unit cell. If all the face -centred atoms along one of the axes are removed, then the resultant stoichiometry of the solid is
Option A	AB ₂
Option B	A ₂ B
Option C	A ₄ B ₃
Option D	A ₃ B ₄
Correct Option	D
Q. No. 17 0021017	When mercuric iodide is added to the aqueous solution of potassium iodide,
Option A	Freezing point is raised.
Option B	Freezing point is lowered.
Option C	Freezing point does not change.
Option D	Boiling point does not change.
Correct Option	Α
Q. No. 18 0021018	The standard reduction potential values of three metallic cations, X, Y and Z are 0.52, -3.03 and -1.18 V respectively. The order of reducing power of the corresponding metal is
	Y>Z>X
Option A	
Option A Option B	X>Y>Z
Option A Option B Option C	X>Y>Z Z>Y>X
Option A Option B Option C Option D	X>Y>Z Z>Y>X Z>X>Y
Option A Option B Option C Option D Correct Option	X>Y>Z Z>Y>X Z>X>Y A
Option A Option B Option C Option D Correct Option Q. No. 19 0021019	X>Y>Z Z>Y>X Z>X>Y A The specific rate constant of a first order reaction depends on the

Option B

Option C

Option D

Correct Option Concentration of the product

Time

D

Temperature

Q. No. 20 0021020	Under the same reaction conditions, the initial concentration of 1.386 mol dm ⁻³ of a substance becomes half in 40 s and 20 s through first order and zero order kinetics, respectively. The ratio (k_1/k_0) of the rate constants for first order (k_1) and zero order (k_0) of the reaction is
Option A	0.5 mol ⁻¹ dm ³
Option B	1.0 mol dm ⁻³
Option C	1.5 mol dm ⁻³
Option D	2.0 mol ⁻¹ dm ³
Correct Option	Α
Q. No. 21 0021021	Among the following electrolytes, which is the most effective coagulating agent for Sb_2S_3 solution?
Option A	Na ₂ SO ₄
Option B	CaCl ₂
Option C	Al ₂ (SO ₄) ₃
Option D	NH ₄ CI
Correct Option	c

Q. No. 22 0021022	The correct order of acidic strength is
Option A	$CI_2O_7 > SO_2 > P_4O_{10}$
Option B	$CO_2 > N_2O_5 > SO_3$
Option C	$Na2O > MgO > Al_2O_3$
Option D	$K_2O > CaO > MgO$
Correct Option	Α

Q. No. 23 0021023	The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is
Option A	Ion- ion interaction
Option B	ion-dipole interaction
Option C	London force
Option D	hydrogen bond
Correct Option	В

Q. No. 24 0021024	Which species has the maximum number of lone pair of electrons on the central atom?
Option A	CIO ₃ -
Option B	XeF ₄
Option C	SF ₄
Option D	I ₃ -
Correct	D

Option	
Q. No. 25 0021025	From the following statements regarding H_2O_2 , choose the incorrect statement.
Option A	It can act only as an oxidizing agent.
Option B	It decomposes on exposure to light.
Option C	It has to be stored in plastic or wax lined bottles in dark.
Option D	It has to be kept away from dust.
Correct Option	Α
Q. No. 26 0021026	The temporary hardness of water due to calcium bicarbonate can be removed by adding
Option A	CaCO ₃
Option B	Ca(OH) ₂
Option C	CaCl ₂
Option D	нсі
Correct Option	В
Q. No. 27 0021027	Which one of the following alkaline earth metal sulphates has its hydration enthalpy greater than its lattice enthalpy?
Option A	CaSO ₄
Option B	BeSO ₄
Option C	BaSO ₄
Option D	SrSO ₄
Correct Option	В
Q. No. 28 0021028	In the context of the Hall-Heroult process for the extraction of Al, which of the following statements is false?
Option A	CO and CO ₂ are produced in this process.
Option B	$\rm Al_2O_3$ is mixed with CaF_2 which lowers the melting point of the mixture and brings conductivity.
Option C	Al ⁺³ is reduced at the cathode to form Al.
Option D	Na ₃ AlF ₆ serves as the electrolyte.
Correct Option	D
Q. No. 29 0021029	Which ore contains both iron and copper?
Option A	Cuprite
Option B	Chalcocite
Option C	Chalcopyrite
Option D	Malachite
Correct Option	c

Q. No. 30 0021030	The product formed in the reaction of $SOCI_2$ (thionyl chloride) with white phosphorous is				
Option A	PCI ₃				
Option B	SO ₂ Cl ₂				
Option C	SCI ₂				
Option D	POCI ₃				
Correct Option	Α				
Q. No. 31 0021031	The species having pyramidal shape is				
Option A	SO ₃				
Option B	BrF ₃				
Option C	SiO ₃				
Option D	OSF ₂				
Correct Option	D				
Q. No. 32 0021032	Hydrogen peroxide in its reaction with KIO4 and NH4OH respectively, is acting as a				
Option A	Reducing agent, oxidizing agent				
Option B	Reducing agent, reducing agent				
Option C	Oxidizing agent, oxidizing agent				
Option D	Oxidizing agent, reducing agent				
Correct Option	Α				
Q. No. 33 0021033	Which one has the highest boiling point?				
Option A	Не				
Option B	Ne				
Option C	Kr				
Option D	Xe				
Correct Option	D				
Q. No. 34 0021034	Which of the following compounds has isopropyl group?				
Option A	2,2,3,3-Tetramethyl pentane				
Option B	2,2-Dimethyl pentane				
Option C	2,2,3-Tetramethyl pentane				
Option D	2-Methyl pentane				
Correct Option	D				
Q. No. 35	The number of structural isomers for C_6H_{14} is				

0021035	
Option A	3
Option B	4
Option C	5
Option D	6
Correct Option	c

Q. No. 36 0021036	A solution of (-)-1-chloro-1-phenylethane in toluene racemises slowly in the presence of a small amount of ${\rm SbCl}_5$, due to the formation of
Option A	carbene
Option B	carbocation
Option C	free radical
Option D	carbanion
Correct Option	В

Q. No. 37 0021037	Identify the correct order of reactivity in electrophilic substitution reaction of the following compounds. (a)Benzene (b)Toluene (c)Chlorobenzene (d) Nitrobenzene
Option A	(a)>(b)>(c)>(d)
Option B	(d)>(c)>(b)>(a)
Option C	(b)>(a)>(c)>(d)
Option D	(b)>(c)>(a)>(d)
Correct Option	с

Q. No. 38 0021038	2-Phenyl propene on acidic hydration gives
Option A	2-phenyl-2-propanol
Option B	2-phenyl-1-propanol
Option C	3-phenyl-1-propanol
Option D	1-phenyl-2-propanol
Correct Option	Α

Q. No. 39 0021039	$Me_3C-MgCl$ on reaction with D_2O produce
Option A	Me ₃ CD
Option B	Me ₃ COD
Option C	(CD) ₃ CD
Option D	(CD) ₃ COD
Correct Option	Α

Q. No. 40 0021040	Under Wolff - Kishner reduction conditions, the reduction which may be brought about is:
Option A	Benzophenone to diphenyl methane
Option B	Benzaldehyde to benzyl alcohol
Option C	Cyclohexanone to cyclohexanal
Option D	Cyclohexanone to cyclohexanol
Correct Option	Α

Q. No. 41 0021041	The compound that will react most readily with NaOH to form methanol is:
Option A	(CH ₃) ₄ N ⁺ I ⁻
Option B	CH ₃ OCH ₃
Option C	CH ₃) ₃ S ⁺ I ⁻
Option D	(CH ₃) ₃ Cl
Correct Option	Α

Q. No. 42 0021042	When phenyl magnesium bromide react with t-butanol, the product formed would be
Option A	Benzene
Option B	Phenol
Option C	t-Butyl benzene
Option D	t-Butyl phenyl ether
Correct Option	Α

Q. No. 43 0021043	In the following sequence of reactions: Toluene $\underline{KMnO_4}$ A SOCl ₂ B $\underline{H_2/Pd}$ C, BaSO4 The product C is
Option A	C ₆ H ₅ COOH
Option B	C ₆ H ₅ CH ₃
Option C	C ₆ H ₅ CH ₂ OH
Option D	C ₆ H ₅ CHO
Correct Option	D

Q. No. 44 0021044	Which of the following halides is least stable and has doubtful existence?
Option A	CCl ₄
Option B	GeI ₄
Option C	SnI ₄
Option D	PbI ₄
Correct	D

Option		

Q. No. 45 0021045	Which one of the following properties is not shown by NO ?
Option A	It is a neutral oxide.
Option B	It combines with oxygen to form nitrogen di oxide.
Option C	Its bond order is 2.5 .
Option D	It is diamagnetic in gaseous state.
Correct Option	D

Q. No. 46 0021046	In the presence of a small amount of phosphorous, aliphatic carboxylic acids react with chlorine or bromine to yield a compound in which α - hydrogen has been replaced by halogen. This reaction is known as
Option A	Wolff- Kishner reaction
Option B	Etard reaction
Option C	Hell-Volhard-Zelinsky reaction
Option D	Rosenmund reaction
Correct Option	c

Q. No. 47 0021047	On heating an aliphatic primary amine with chloroform and ethanolic potassium hydroxide, the organic compound formed is
Option A	An alkyl cyanide
Option B	an alkyl isocyanide
Option C	an alkanol
Option D	an alkanediol
Correct Option	В

Q. No. 48 0021048	Which one is classified as a condensation polymer?
Option A	Teflon
Option B	Acrylonitrile
Option C	Dacron
Option D	Neoprene
Correct Option	c

Q. No. 49 0021049	Synthesis of each molecule of glucose in photosynthesis involves
Option A	6 molecules of ATP
Option B	8 molecules of ATP
Option C	10 molecules of ATP
Option D	18 molecules of ATP
Correct Option	D

Q. No. 50 0021050	Anemia is caused by deficiency of vitamin
Option A	B ₁
Option B	B ₂
Option C	B ₆
Option D	B ₁₂
Correct Option	D