vishny paya.

Code No.: 4009

FACULTY OF SCIENCE

M.Sc. I Semester Examination

April/May - 2007

COMPUTER SCIENCE

Paper-1.1 – Discrete Mathematical Structure

Time: 3 Hours]

[Max. Marks : 100

Note:

Answer all questions.

SECTION - A

 $(8 \times 5 = 40)$

Symbolize the propositions.

"It is humid and cloudy, or it is raining, but at the same time it is false that it is both humid and raining."

- 2. Show that modus tollens is a valid rule of inference.
- Show that in any graph, the sum of degrees of the vertices is twice the number of edges.
- Show that in a connected planar graph with e edges and v vertices, 3 v-e≥6. v-e+v=2
- How many ways can we get a sum of 4 or 8 when two distinguishable dice are rolled?
- Show that c(n, r) = c(n-1, r) + c(n-1, r-1).

Find the coefficient of x^{20} in $(x^3 + x^4 + x^5 +)^5$.

Find a particular solution of $a_n - 4 a_{n-1} + 4 a_{n-2} = 2^n$. 18

SECTION - B

 $(4 \times 15 = 60)$

9. (a) Analyze the following argument and determine whether it is a valid argument.

> "If I get the job and work hard, then I will be promoted. I was not promoted. Thus either I did not get the job or I did not work hard."

Prove that $(P \rightarrow q) \land (\sim r \rightarrow \sim q) \land \sim r \rightarrow \sim p$ is a tautology,

OR

(b) (i) Show that $(P \rightarrow q) \rightarrow r$; $(P \land \sim q) \rightarrow r$ are equivalent.

- Minimise the Boolean expression

 x'yz'+ x'y'z'+ xy'z'+ xyz+ xy'z using Karnaugh maps.
- 10. (a) Show that if a connected planar graph G has e edges and r regions, then $r \le \frac{2}{3}$ e.
 - (ii) Let G = (V, E) be a graph in which V = {a, b, c, d, e} and E = {(a, b), (b, a), (a, c), (a, d), (b, c) (d, e)}.

 Draw a representation of G and find a directed path in G from a to e.

OR

- (b) (i) Show that a tree always has one fewer edge than vertices.
 - (ji) Show that k_{3,3} is a non-planar graph.
- 11. (a) (i) How many arrangements are there of {8.a, 6.b, 7.c} in which each a is on at least on side of another a?
 - (ii) How many integral solutions are there of $x_1 + x_2 + x_3 + x_4 = 20$ if $2 \le x_1 \le 6$, $3 \le x_2 \le 7$, $5 \le x_3 \le 8$ and $2 \le x_4 \le 9$?

OR

- (b) (i) How many ways can 12 white pawns and 12 black pawns be placed on the black squares of an 8×8 chess board?
 - (ii) From a group of 10 professors how many ways can a committee of 5 members be formed so that at least one of professor A and professor B will be included?
- 12. (a) (i) Find the coefficient of x^{10} in($x^3 + x^4 +$)².
 - (ii) Let $A = \begin{bmatrix} 4 & 6 \\ 1 & 5 \end{bmatrix}$. For $n \ge 0$, solve for the entries of A^n using recurrence relations.

OR

- (b) (i) Calculate the coefficient of x^{15} in $(x^2 + x^3 + x^4 + x^5) (x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)$ $(1 + x + \dots + x^{15})$
 - (ii) Solve $\sqrt{a_n} \sqrt{a_{n-1}} 2\sqrt{a_{n-2}} = 0$ where $a_0 = a_1 = 1$.