Pharmacophore Solutions

1.	Colchicine is biogenetically derived from one of the following										
	(A) Tyrosine and Phenylalanine	(B) Tryptophan and Phenylalanine									
	(C) Ornithine and Tryptophan	(D) Ornithine and Phenylalanine									
2.	The diagnostic character for the microscopi										
	(A) fibres with Y-shaped pits	(B) horse shoe shaped stone cells									
	(C) slereids containing calcium oxalate crys	stals									
	(D) stratified cork										
3.	It is possible to initiate the development cultures by suitable manipulation of medium	t of complete plants from callus cell n with respect to									
	(A) minerals (B) vitamins	(C) carbohydrates (D) hormones									
4.	Polyploidy is defined as										
	(A) addition of one chromosome										
	(B) multiplication of entire chromosome se	t									
	(C) submicroscopic changes in DNA materi	al									
	(D) gross structural changes										
5.	The starting material for the synthesis of Al	LPRAZOLAM is									
	(A) 3-amino-5-bromoacetophenone	(B) 2-amino-5-chlorobenzophenone									
	(C) 2-amino-5-bromoacetophenone	(D) 3-amino-5-chlorobenzophenone									
6.	Simplification of Morphinan system gave on	e BENZOMORPHAN derivative									
	(A) Pentazocin	(B) Pethidine									
	(C) Levorphanol	(D) Buprenorphine									
7.	A metabolite of SPIRONOLACTONE is										
	(A) Aldosterone (B) Canrenone	(C) Corticosterone (D) Pregnenolone									
8.	The IUPAC name for NAPROXEN is										
	(A) (S)-2-(6-ethoxy-2-napththyl)-acetic ac	id									
	(B) (S)-2-(6-methoxy-2-napththyl)-acetic	acid									
	(C) (S)-2-(6-ethoxy-2-napththyl)-propionic										
	(D) (S)-2-(6-methoxy-2-napththyl)-propio	nic acid									

9.	The metabolic fund	tion of Riboflavin invo	olves the following						
	(A) FMN and FAD		(B) NADP and NA	ADPH					
	(C) AMP and ATP		(D) Retine and R	etinine					
10.	X-ray spectral lines	K _a doublet arises fro	m transition of electr	ons from					
	(A) M shell to K sh	ell	(B) L shell to K s	hell					
	(C) L shell to M she	ell	(D) M shell to L s	hell					
11.	The method of expr	essing magnetic field	strength is						
	(A) cycles/sec	(B) pulses/sec	(C) debye units	(D) gauss					
12.	A solvent used in N	IMR studies is	(6)						
	(A) chloroform	. ed.	(B) acetone						
	(C) carbontetrachl		(D) methanol						
13.		detector electrode for	1.3	are					
	(A) platinum wire(C) Ag-AgCl electr	odo	(B) glass electro						
	100 100 100 100 100 100 100 100 100 100		(D) lanthanum fluoride s carried out by the microbial culture of						
14.			and the second s						
	(A) Fusarium moni (C) Aspergillus nig		(B) Rhizopus nig(D) Candida utilis						
	PERSONAL RECORD FOR A SERVICE AND A SERVICE		\$1000 - 00000000000000000000000000000000						
15.			nimum growth tempe						
	(A) 20°C	(B) 37°C	(C) 45°C	(D)65°C					
16.	Obligatory anaerobe								
		gen and grow better	10.00						
		oxygen and die in its							
		gen levels below nori							
. 7		sence of atmospheric	. oxygen						
17.	Plasmid is a	involved in the protei	n synthosis						
	(B) circular piece of		ii synthesis						
	- ^^ - ^	at is formed by joining	na nieces DNA						
		stance secreted by o	o managal Caraca anana alika ana 1988						
18.		is because of the lack	Para Carresta na cana ana mana a						
	(A) acid phosphatas	se .	(B) lactate dehyd	rogenase					
	(C) galactose-1-pho	sphate-uridyl transfe	erase						
	(D) amylase								

19.	Synthesis of UREA takes place exclusively	in								
	(A) kidney	(B) liver								
	(C) gall bladder	(D) urinary bladder								
20.	A term which describes a cofactor that is fi	nally bound to an apoenzyme is								
	(A) holoenzyme	(B) prosthetic group								
	(C) coenzyme	(D) transferase								
21.	How many parts of 10% ointment be mixe 12% ointment?	ed with 2 parts of 15% ointment to ge								
	(A) 2 (B) 3	(C) 5 (D)6								
22.	The correct non-ionic surfactant used preparation of mucoadhesives is	as a penetration enhancer in the								
	(A) oleic acid	(B) tween-80								
23.	(C) glycerol One of the ex-officio member of the Pharm	(D) propylene glycol acy Council of India is								
	(A) Director General of Health Services									
	(B) Government Analyst									
	(C) Registrar of the State Pharmacy Council									
	(D) Director General of Indian Veterinary F	Research Institute								
24.	The Schedule in Drugs and Cosmetics Act guidelines for clinical trials, import and ma									
25.	(A) Schedule 'O' (B) Schedule 'M' A retardant material that forms a hydroph tablets is									
	(A) H.P.M.C	(B) C.A.P								
	(C) Polyethylene	(D) Carnauba Wax								
26.	A drug which causes pink to brownish ski the initiation of therapy is									
27.	(A) itraconazole (B) clofazimine The risk of Digitalis toxicity is sign administration of	그렇지 얼마리를 모든 어떻게 하면 아이들에 어린 아이들이 되었다								
	(A) triamterene (B) lidocaine	(C) captopril								
28.	(D) hydrochlorthiazide An agent used in Prinzmetal angina ha coronary blood supply is									
	(A) nitroglycerine	(B) nifedipine								
	(C) timolol	(D) isosorbide mononitrate								
29.	An organism which has been implicated a and peptic ulcer is	s a possible cause of chronic gastritie								
	(A) Campylobacter jejuni	(B) Escherichia coli								
	(C) Helicobacter Pylori	(D) Giardia lamblia								

30.	A 5HT _{ID} receptor agonist useful in m	nigraine is	
	(A) sumatriptan (B) ketanseri	n (C) ergotamine	(D) methysergide
	Q.31 - 80 Carry	Two Marks Each.	
31.	At present, different species of Papare being cultivated instead of P.sor		
	(A) more of morphine	(B) less of morphi	ne
32.	(C) only codeine Guggulipid, a resin is	(D) only thebaine	
	(A) a hypolipidemic agent obtained compound (±) gossypol	from cotton plants contain	ning multifunctional
	(B) a lipid obtained from Arctium la treatment of dermatoses	ippa, asteraceae and tradit	ionally used for the
	(C) cathartic glucoresin obtained ancient time	from Ipomoea orizabensi	is and used since
	(D) a hypolipidemic agent obtaine mixture of sterols including Z-p		
33.	In nitrofurantoin synthesis, 5-nitrofu the following intermediate in presen		
	(A) hydantoin	(B) 1-5-diamino h	ydantoin
	(C) 1-3-diamino hydantoin	(D) 1-amino-hydar	ntoin
34.	4-hydroxy-3-hydroxymethyl benzald then kept with ether solvent, t-be Resulting compound is reduced with is	utyľ cyanide and acetic a	acid for ten days.
35.	(A) isoprenaline (B) dobutamir 2-iminothiazolidine is treated with roundworm infection is		
36.	(A) piperazine (B) tetramisol Thiamine hydrochloride on treatment		
	(A) thymochrome with fluorescence		
	(B) oxythiamine with golden yellow of	colour	
	(C) neopyrithiamine with orange yell	ow colour	
37.	(D) tiochrome with blue fluorescence A new drug delivery system w spontaneously form a multilamella aqueous media separating the lipid la	hich is composed of p r concentric bilayer vesicl	
	(A) prodrugs	(身) liposomes	
38.	(C) osmotic pumps Unless otherwise stated in the individ disintegration test for enteric coated		
	(A) 0.1 M HCl	(B) phosphate buff	er
	(C) water	(D) 0.1 MH ₂ SO ₄	

39.		ired to render a 1.5% solution of drug isotonic int of 1% w/v solution of drug is -0.122°C and
	(A) 0.65% (B) 0.585%	(C) 0.9% (D) 0.5%
40.	IR Spectra appear as dips in the spectra because it is a plot of	curve rather than maxima as in UV-Visible
	(A) % Absorbance against Wave nu	ımber.
	(B) % Transmittance against Conce	entration
	(C) % Absorbance against Concent	ration
	(D) % Transmittance against Wave	number.
41.	ESR is applied to only those substa the magnetic moment of	ances showing paramagnetism which is due to
	(A) neutrons	(B) protons
42.		(D) unpaired electrons roton generates a secondary magnetic field netic filed. The portion is then said to be
	(A) shielded	(B) shifted
	(C) hydrogen bonded	(D) deshielded
43.	The analyte is used in the form of should undergo	of a solution in flame photometry because it
	(A) evaporation	(B) condensation
	(C) nebulisation	(D) precipitation
44.		on of Mebendazole and thiabendazole involves
	(A) stimulation of acetylcholine rece	
	(B) inhibition of dihydropolate reduc	ctase
	(C) interference with microtubyle sy	nthesis and assembly
45.	(D) block thiamine transport Isoniazid is a primary antitubercula	r agent that
	(A) requires pyridoxine supplement	tation
	(B) causes ocular complications that	at are reversible if the drug is discontinued
	(C) is ototoxic and nephrotoxic	
46.	(D) should never be used due to he Decreased risk of Atherosclerosis is	
	(A) very low density lipoproteins(C) cholesterol	(B) low density lipoproteins(D) high density lipoproteins
47.	The mechanism of action of Paclitax	kel is
		ation between specific bases and block the
		the enhancement of tubulin polymerization
		ti #i

- (C) competitive partial agonist inhibitor of estrogen and binds to estrogen receptors
- (D) S-Phase specific antimetabolite that is converted by deoxykinase to the 5'mononuleotid
- 48. Lycopodium spore method can be used to find out percentage purity of crude drugs which contain
 - (A) multi-layered tissues or cells
 - (B) well defined particles which can be counted
 - (C) oil globules
 - (D) characteristic particles of irregular thickness, the length of which can be measured
- 49. The microscopical character of flower buds of Eugenia caryophyllus is
 - (A) collenchymatous parenchyma containing in its outer part numerous ellipsoidal schizolysigenous oil glands
 - (B) small translucent endosperm containing aleurone grains
 - (C) wide parenchymatous starchy cortex, the endosperm containing volatile oil
 - (D) outer surface consisting of external perisperm, rough, dark brown with reticulate furrows
- 50. In protein biosynthesis, each amino acid
 - (A) recognizes its own codon by a direct interaction with the m-RNA template
 - (B) is added in its proper place to a growing peptide chain throught he "adaptor" function of t-RNA
 - (C) is first attached to an anticodon specific for the amino acid
 - (D) undergoes fidelity translation which is assured by the presence of traces of DNA on the ribosome
- 51. Rabies Antiserum I.P. is a
 - (A) a freeze dried preparation containing antitoxic globulin
 - (B) a preparation containing specific globulin or its derivatives obtained by purification of hyperimmune serum or plasma of healthy horses
 - (C) a sterile preparation containing antitoxic globulin
 - (D) a sterile preparation containing antitoxic globulins obtained by purification of hyperimmune serum of horses

Q.52-58 are multiple selection items. P, Q, R, S are the options. Two of these options are correct. Choose the correct combination among A, B, C and D.

- 52. Total ash value in case of crude drug signifies
 - (P) organic content of the drug
 - (Q) mineral matter in the drug
 - (R) addition of extraneous matter such as sand, stone etc.
 - (S) woody matters present in the drug
 - (A) R, S
- (B) Q, R
- (C) P, Q
- (D)P, S
- 53. The compounds listed below contain σ , π and η electrons
 - (P) Acetaldehyde
 - (Q) Butadiene

	(R) Formaldehyde
	(S) Benzene
54.	(A) P, S (B) Q, R (C) P, R (D)Q, S A 60 year old patient presents with glaucoma. Therapy should include
	(P) topical atropine
	(Q) topical pilocarpine
	(R) oral acetazolamide
	(S) oral pilocarpine
55.	(A) P, Q (B) Q, R (C) R, S (D)P, S Measurement of particle size in pharmaceutical Aerosols is by
	(P) Cascade impactor
	(Q) light scatter decay
	(R) Karl-Fischer method
	(S) IR spectrophotometry
56.	(A) P, Q (B) Q, R (C) R, S (D)P, S The common attributes of ascorbic acid, an antiscrobutic vitamin, are
	(P) exist in nature in both reduced and oxidized form and in a state of reversible equilibrium
	(Q) has a keto-enol system in the molecule
	(R) has an aldehyde group since it gives positive Schiff's reaction
	(S) salt forming properties are due to the presence of free carboxyl group
	(A) P, R (B) Q, R (C) R, S (D)P, Q
57.	Two properties of Radiopharmaceuticals are
	(P) slow localization in target tissue
	(Q) very long half-life to provide enough exposure to get imaging information
	 (R) short half-life to minimize radiation exposure yet long enough to get imaging information
	(S) rapid localization in target tissue and quick clearance from non-target organs
	(A) P, Q (B) Q, R (C) R, S (D)P, S
58.	Two correct statements concerning vitamin D are
	 (P) the active molecule 1, 25-dihydroxy cholecalciferol binds to intracellular receptor proteins
	(Q) cholecalciferol is found in vegetables
	(R) 1, 25-dihydroxy-D₃ is the most potent vitamin D metabolite
	(S) it is required in the diet of individuals exposed to sunlight
	(A) P, S (B) P, R (C) R, S (D) Q, S

Q.59-65 ARE "MATCHING" exercises. Match Group I with Group II. Choose the correct combination among the alternatives A, B, C and D.

59.

59.

Group I (Tablet Additives)	Group II (Examples)				
(P) Binder	(1) Acacia				
(Q) Insoluble lubricant	(2) Light mineral oil				
(R) Film coating material	(3) Hydroxy ethyl cellulose				
(S) Direct compression diluent	(4) Microcrystalline cellulose				

(A) P - 2 Q - 1 R - 3 S - 4 (B) P - 3 Q - 2 R - 1 S - 4 (C) P - 4 Q - 3 R - 2 S - 1 (D) P - 1 Q - 2 R - 3 S - 4

60.

				2000	(IF		ou ete	_)			G (Cor			II tio									
			(F) T	he	rme	oco	up	ple				(1) Oxides	(1) Oxides of Mn, CO and Ni						i					
			(Q) Pyroelectric Detector					r	(2) Bi-Sb (3) Xenon																
			(R) Golay cells																						
			(5	s) T	he	rm	isto	ır				İ	(4) Triglyci	ne	su	lph	ate	i i							
(A	() F) <u>-</u>	4	Q	-	2	R	-	3	S	=	1	(B)	Р	-	3	Q	н	1	R	-	4	S	-	2
61.	C) [0 -	1	0	543	3	R	-	2	S	8	4	(D)	P	-	2	0	-	4	R	-	3	S	-	1

Group I	Group II
(Alkaloid)	(Ring system)
(P) Coniine	(1) Isoquinoline
(Q) Papaverine	(2) Pyridine-Piperidine
(R) Anabasine	(3) Yohimbane
(S) Reserpine	(4) Piperidine

(A) P - 2 Q - 3 R - 1 S - 4 (B) P - 4 Q - 3 R - 2 S - 1 (C) P - 4 Q - 1 R - 2 S - 3 (D) P - 2 Q - 4 R - 3 S - 1

62.

Group I	Group II
(Immunoglobulins [Ig])	(Actions)
(P) IgG	(1) Agglutinating and cytolytic
(Q) IgA	(2) Antiallergic
(R) IgM	(3) Neutralises toxins
(S) IgE	(4) Antimicrobial

GATE Pharmacy 2003

63.

Group I	Group II
(Antibiotics)	(Microorganism used in I.P. assay)
(P) Streptomycin	(1) Bacillus cereus
(Q) Erythromycin	(2) Stahylococcus epidermidis
(R) Gentamycin	(3) Klebsiella pneumoniae
(S) Tetracycline	(4) Micrococcus luteus

	(S) Tetracycline	(4) Micrococcus luteus
()	A) P - 4 Q - 3 R -	1 S - 2 (B) P - 3 Q - 4 R - 2 S - 1
64.	C) P - 1 Q - 2 R - 1	3 S - 4 (D) P - 3 Q - 4 R - 1 S - 2
04.	Group I	Group II
	(Synthetic estrogtenic drugs)	(Methods of synthesis)
	(P) Ethinyl estradiol	(1) 4, 4' Dimethoxy benzophenone is treated with 4-methoxy benzoyl chloride + Mg, resulting product is treated with PTS followed by Cl_2 + CCl_4
	(Q) Dienoestrol	(2) Deoxyanisoin is alkylated and product subjected to Grignard reaction, the resulting tertiary alcohol is dehydrated and demethylated with alcoholic KOH
	(R) Chlorotrianisine	(3) By Pinacol reduction of p-hydroxy propiophenone and subsequent removal of water
	(S) Stilboestrol	(4) From Estrone by the action of Potassium acetylide

65.

Group I	Group II
(Immunosuppressants)	(Mechanism of action)
(P) Azathioprine	(1) Destroys proliferating lymphoid cells
(Q) Tacrolimus	(2) Prodrug transformed to mercaptopurine which on further conversion inhibits purine metabolism
(R) Glucocorticoids	(3) Inhibits the cytoplasmic phosphatase Calcineurin
(S) Cyclophosphamide	(4) Interferes with the cell cycle of activated lymphoid cells

Data for Q.66 – 90 are based on the statement/problem. Choose the correct answer for each question from among the options A, B, C and D. Data for questions 66 to 68:

Leaves of Digitalis purpurea were subjected to morphological, microscopical and chemical screening.

- 66. Morphological character with respect to the leaf is
 - (A) ovate lanceolate with entire margin
 - (B) ovate lanceolate with crenate margin
 - (C) linear lanceolate with serrate margin
 - (D) linear lanceolate with sinuate margin
- 67. Microscopical character of trichomes is
 - (A) unicellular, warty
 - (B) multicellular, uniseriate with 2-7 cells
 - (C) multicellular, uniseriate with 10-14 cells
 - (D) multicellular, multiseriate with 10-14 cells
- 68. The drug gives positive
 - (A) Borntrager's test

(B) Murexide test

(C) Legal's test

(D) Thaleoquin test

Data for questions 69 and 70:

In a synthetic procedure 5-chloro-2, 4-diamino sulfomyl aniline is treated with P to obtain 7-amino sulfomyl-6-chloro-3-chloro-1 nethyl-2H-1, 2, 4-benzothiadiazin-1:1 dioxide. Subsequently it is refluxed with C_6H_5 - CH_2 -SH + NaOH + DMF to yield Y.

- Select the reagent P
 - (A) Chloroacetyldehyde

(B) Formaldehyde

(C) Formic acid

(D) Acetaldehyde

- 70. The final product Y is
 - (A) 3-benzyl methyl-6-chloro-2H-1, 2, 4-benzothiadiazine-7 sulphonamide 1, 1dioxide
 - (B) 3-benzyl thiomethyl-6-chloro-2H-1, 2, 4-benzothiadiazine-7 sulphonamide 1, 1-dioxide
 - (C) 3-benzyl thiomethyl-5-chloro-2H-1, 2, 3-benzothiazine-7 sulphonamide 1, 1-
 - (D) 3-benzyl thiomethyl-5-chloro-2H-1, 2, 3-benzothiadiazine-7 sulphonamide 1, 1-dioxide

Data for questions 70 to 73:

Proguanil is synthesized by diazotization of p-chloroaniline and treating with dicynamide to yield p-chlorophenyldicyandiamide which is converted to Proguanil by reaction with an aliphatic amine. Proguanil is metabolized to a triazine derivative which is an active metabolite.

- 71. What is the reagent used for diazotization?
 - (A) NaNO₂ + dilute HCl

(B) KNO₃ + dilute H₂SO₄

(C) Zn + dilute H₂SO₄

(D) Tin + H₂SO₄

72. Name the aliphatic amine used

(A) Dimethylamine

(B) Isopropylamine (D) Diethylamine

(C) Isobutylamine

Name the metabolite

(A) Thioguanil

(B) Diguanil

(C) Cycloguanil

(D) p-chlorophenyl biquanide

Data for questions 74 to 76:

Calculate the \(\lambda\) max for the following compounds. Base value for Benzaldehyde in ethanol

74. λmax of p-promobenzaldehyde in nm is

73.

76.

(C) 275

(D) 260

75. λmax of p-hydroxy benzaldehyde in nm is

(B) 275

(C) 261

(D) 270

λmax of o-chlorobenzaldehyde in nm is

(A) 275

(B) 265

(C) 255

(D) 250

Data for questions 77 and 78:

In the assay of Folic acid I.P., a weighed quantity is dissolved in 0.1 M NaOH solution and subsequently treated with Zn and HCl. The resulting product is mixed with ammonium sulphamate, kept for 2 minutes and a reagent is added to get final coloured product whose absorbance is measured

Select the product obtained when folic acid is heated with Zn + HCl

(A) Benzoic acid

(B) p-aminobenzoic acid

(C) Glutamic acid

(D) Succinic acid

- 78. Select the reagent used for the development of colour
 - (A) N-1-naphthyl ethylene diamine didydrochloride
 - (B) Ninhydrin reagent
 - (C) p-dimethylamino benzaldehyde
 - (D) Phloroglucinol

Data for questions 79 and 80:

Parkinsonism is a common neurological movement disorder. Signs include rigidity of skeletal muscles, akinesia, flat facies and tremors at rest. Both L-DOPA and Carbidopa are used.

- 79. Carbidopa is used because
 - (A) it crosses blood brain barrier
 - (B) it inhibits aromatic L-aminoacid decarboxylase
 - (C) it inhibits MAO type A
- (D) it inhibits MAO type B Select the specific unwanted effect of L-DOPA 80.

(A) Dementia

(B) Hypertension

(C) Dyskinesia

(D) Excitotoxicity

Data for questions 81 and 82:

The decomposition of a drug in aqueous acid solution was found to follow first order reaction. The initial concentration was found to be 0.056 M. The concentration after a period of 12 hours was 4.10×10^{-2} moles/litre. The reaction rate constant is 0.02599

- What is the quantity of drug remaining undecomposed after 8 hours?
 - (A) 0.455 moles/litre

(B) 0.25 moles/litre

(C) 0.0455 moles/litre

- (D) 0.10 moles/litre
- 82. What is the amount of drug deteriorated during the period of 24 hours?
 - (A) 0.026 moles/litre

(B) 0.0026 moles/litre

(C) 0.03 moles/litre

(D) 0.053 moles/litre

Data for questions 83 to 85:

In a formulation development laboratory, you have to formulate an oral dosage from containing olive oil, vitamin A and water.

- Suggest a suitable dosage form
- (B) Suspension
- (C) Emulsion
- (D) Capsule
- 84. Suggest a substance to be incorporated into the formulation
- (B) Acacia
- (C) Cetrimide
- (D) Alcohol
- Select one of the appropriate labeling directions 85.
 - (A) Keep in the refrigerator
- (B) No preservatives added

(C) Schedule 'G'

(D) Shake well before use

Data for questions 86 and 87:

Successive solvent extraction of a crude drug with petroleum ether, benzene, chloroform, ethyl alcohol and water was performed. Qualitative chemical testing of petroleum ether extract gave positive Keller-Kiliani and Salkowski's reactions. Ethyl alcohol and aqueous extract gave positive FeCl3 reaction and acqueous extract gave foamy solution

- What constituents are present in the petroleum ether/benzene extract?
 - (A) Plant sterols

(B) Tropane alkaloids

(C) Sesquiterpenoids

- (D) Purines
- What constituents are present in the ethyl alcohol and aqueous extracts? 87.
 - (A) Plants lipids

(B) Anthraguinone glycosides

(C) Alkaloids

(D) Plant phenols and saponins

Data for questions 88 to 90:

A business executive while playing tennis complained of chest pain and ws brought to emergency room. He has history or mulu suppertension and elevated blood cholesterol. ECG changes confirmed the diagnosis of myocardial infraction. The decision is made to open his occluded artery by using thrombolytic agent and also use aspirin later.

- 88. The thrombolytic agent used is
 - (A) henarin
- (B) warfarin
- (C) anistreplase
- (D) vit. K

- 89. Mechanism of action of aspirin is
 - (A) inhibit vitamin K absorption
- (B) antithrombin activity
- (C) inhibit metabolism of heparin
- (D) inhibit platelet aggregation
- Mechanism of action of antithrombic lagent is 90.

 - (A) conversion of plasminogen to plasmin (B) activation of clotting factors
 - (C) inhibit platelet function.
- (D) agonist of vitamin K