BHU MATHEMATICS 2018

BHU - TEAM MATHEMATICS with India's Best Educators

Shivangi Tayal CSIRJRF

Manoj Gunjal CSIR JRF

Vikas Yadav CSIR JRF

Rohit Muranjan CSIR JRF

Apoorva cSIRJRF

BHU MATHEMATICS 2018

1. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups such that $\operatorname{Ker} \phi=\{e\}$. Then
(1) ϕ is onto
(2) ϕ is one-one
(3) ϕ is one-one and onto both
(4) ϕ maps every element of G to identity of G^{\prime}
2. The number of elements of order 12 in a cyclic group of order 12 is
(1) 3
(2) 2
(3) 4
(4) 1
3. Let H be a finite subgroup of a group G and let $g \in G$ If $g H g^{-1}=\left\{g h g^{-t} \mid h \in H\right.$ then
(1) $\left|g \mathrm{Hg}^{-1}\right|=|H|$
(2) $\left|g \mathrm{gg}^{-1}\right|<|H|$
(3) $\left|g \mathrm{Hg}^{-1}\right|>|H|$
(4) $\left|g \mathrm{Hg}^{-1}\right|=1$
4. The remainder of $(37)^{49}$ when divided by 7 is
(1) 3
(2) 1
(3) 2
(4) 6
5. Which one of the following is an incorrect statement?
(1) Every subset of a linearly independent set is linearly independent.
(2) $\{O\}$ is a linearly dependent set.
(3) Every set which contains a linearly dependent subset is linearly dependent.
(4) Every set containing O is linearly independent.
6. If u and v are vector in an inner-product space such that $||u+v\|=10| | u-v\|=2$ and $|| v \|=4$, then $||u||=$
(1) 6
(2) 4
(3) 2
(4) 8
7. If W is a subspace of a vector space V over the field $\left(\mathbb{Z}_{3},+_{3}, X_{3}\right)$ such that $\operatorname{dim}(V)=7$ and $\operatorname{dim}(W)=4$, then the number of element in V / W is
(1) 9
(2) 81
(3) 49
(4) 27
8. If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 2\end{array}\right]$, then $A^{4}-2 A^{3}-A^{2}+2 I=$
(1) 2 A
(2) $2(I-A)$
(3) $2(I+A)$
(4) $2(A-I)$
9. If W is the subspace of $M_{n \times n}(\mathbb{R})$ consisting of skew-symmetric matrices, then
(1) $\operatorname{dim}(W)=\frac{n(n+1)}{2}$
(2) $\operatorname{dim}(W)=n^{2}-n$
(3) $\operatorname{dim}(W)=\frac{n(n+1)}{2}$
(4) $\operatorname{dim}(W)=(n-1)^{2}$
10. If a set A has n elements, then the number of all relations on A is
(1) $2^{n^{2}}$
(2) n^{2}
(3) 2^{n}
(4) $2 n$
11. Total number of transpositions in the permutation
$f=\left(\begin{array}{ccccccc}1 & 2 & 34 & 5 & 67 & 8 & 910 \\ 10 & 9 & 35 & 1 & 68 & 2 & 74\end{array}\right)$ are
(1) 8
(2) 6
(3) 9
(4) 6
12. The number of generators is an infinite cyclic group is
(1) 8
(2) 7
(3)9
(4)6
13. If V is a real inner-product space and $\alpha, \beta \in V$ such that $||\alpha||=\|\beta\|$ then $\langle\alpha+\beta, \alpha-\beta\rangle=$
(1) $2\|\alpha\|^{2}$
(2) $2\|\alpha\|$
(3) 0
(4) $\|\alpha\|^{2}$
14. If T is a linear transformation from the vector space $\mathbb{R}^{2}(\mathbb{R})$ into the vector space $\mathbb{R}^{3}(\mathbb{R})$ such that $T(x, y)=$ $(x+y, x-y, 2 y)$ then rank of T is
(1) 3
(2) 2
(3) 1
(4) 0
15. In a group of order 66, the number of Sylow-11 subgroups is
(1) 1
(2) 3
(3) 2
(4) 6
16. If R is a ring such that $a^{2}=a$ for all $a \in R$, then characteristic of R is
(1) 0
(2) ∞
(3) 2
(4) 4
17. Total number of group homomorphism from the group \mathbb{Z}_{12} to \mathbb{Z}_{30} are
(1) 6
(2) 3
(3) 2
(4) 1
18. The order of the subgroup $\langle 5\rangle \oplus\langle 3\rangle$ of the group \mathbb{Z}_{12} to \mathbb{Z}_{30} are
(1) 6
(2) 3
(3) 2
(4) 1
19. Total number of roots of the polynomial $\overline{2} x^{2}+\overline{4} x+\overline{4}$ over the $\left(\mathbb{Z}_{10}+_{10}, \times_{10}\right)$ are
(1) 1
(2) 2
(3) 3
(4) 4
20. If $W_{1}=\{(x, y, z, x, t) \mid x, y, z, t \in R\}$ and $W_{2}=\{(0, x, y, z, t) \mid x, y, z, t \in R\}$ are two subspaces of $\mathbb{R}^{5}(\mathbb{R})$, then $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=$
(1) 4
(2) 3
(3) 2
(4) 1
21. Let $T: V \rightarrow W$ be a linear transformation, where $\operatorname{dim}(V)=m, \operatorname{dim}(W)=n$ and $m<n$ Then
(1) T is surjective but not injective
(2) T can be injective but not surjective
(3) $\mathrm{T}=0$
(4) T is both injective and surjective
22. The order of the group $\mathbb{Z} / 30 \mathbb{Z}$ is
(1) ∞
(2) 6
(3) 5
(4) 30
23. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x-y, x-2 y)$ is non-singular. Then $T^{-1}(x, y)=$
(1) $(y-x, 2 x-y)$
(2) $(x-y, 2 x-y)$
(3) $(x+y, y-2 x)$
(4) $(2 x-y, x-y)$
24. If the order of every element of a element of a group is 2 , then this group
(1) is Abelian
(2) is cyclic
(3) is of infinite order
(4) is definitely non-abelian
25. Let R be a relation defined on the set of integers by R b if $a=k b$ for some positive integer k , then
(1) R is reflexive and transitive but not symmetric
(2) R is reflexive and symmetric but not transitive
(3) R is symmetric
(4) R is an equivalence relation
26. If a is an elements of group G such that $o(\alpha)=n=2 m$ then which one of the following is also of order n ?
(1) a^{2}
(2) a^{m}
(3) a^{4}
(4) a^{3}
27. If the characteristic values of an invertible $n \times n$ matrix A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the characteristic values of $\operatorname{Adj}(A)$ are
(1) $\frac{1}{\lambda_{r}}, 1 \leq r \leq n$
(2) $\frac{1}{\lambda_{r}|A|}, 1 \leq r \leq n$
(3) $\frac{|A|}{\lambda_{r}}, 1 \leq r \leq n$
(4) $|A| \lambda_{r}, 1 \leq r \leq n$
28. Which one of the following rings is field ?
(1) $\left(\mathbb{Z}_{4},+_{4}, \times_{4}\right)$
(2) $\left(\mathbb{Z}_{6},+_{6}, \times_{6}\right)$
(3) $\left(\mathbb{Z}_{7},+_{7}, \times_{7}\right)$
(4) $\left(\mathbb{Z}_{9},+_{9}, \times_{9}\right)$
29. Let T be a linear operator on R^{3} defined by $T(x, y, z)=(3 x-3 y, x-y, 2 x+y+z)$ Then the rank and nullity of T are respectively
(1) 3,0
(2) 1,2
(3) 2,1
(4) 0,3
30. The number of invertible elements in the ring $\left(\mathbb{Z}_{24},+_{24}, \times_{24}\right)$ is
(1) 24
(2) 8
(3) 6
(4) 3
31. $\overline{\operatorname{lnm}}$ and $\underline{\lim }$ of the sequence $\cos \frac{n \pi}{4}+\sin \frac{n \pi}{4}$ are respectively
(1) $\sqrt{2},-\sqrt{2}$
(2) $\sqrt{2},-1$
(3) $1,-\sqrt{2}$
(4) $1,-1$
32. If a sequence $\left\{a_{n}\right\}_{n+}^{\infty}$ of elements in the interval $(-1,1)$ is given, then which one of the following is true?
(1) Every limit point of $\left\{a_{n}\right\}$ is in $(-1,1)$
(2) Every limit point of $\left\{a_{n}\right\}$ is in $(-1,1)$
(3) The limit points of $\left\{a_{n}\right\}$ can only be in $\{-1,0,1\}$
(4) the limit point of $\left\{\alpha_{n}\right\}$ cannot be in $\{-1,0,1\}$
33. Which of the following statements is true?
(1) The functions $\sin x$ and x^{2} are uniformly continuous on $[0, \infty)$
(2) The function $\sin x$ and e^{-x} are uniformly continuous on $[0, \infty)$
(3) The Function e^{-x} and $\frac{1}{x}$ are uniformly continuous on $[0, \infty)$
(4) The function x^{2} and $\frac{1}{x}$ are uniformly continuous on $[0, \infty)$
34. If C is the circle $|z|=4$, then $\oint_{C} \frac{d z}{z^{2}+4}$ is equal to
(1) $4 \pi i$
(2) $2 \pi i$
(3) πi
(4) 0
35. Let A be a closed subset of $\mathbb{R}, A \neq \phi A \neq \mathbb{R}$ Then A is
(1) the closure of the interior of A
(2) a countable set.
(3) a compact set
(4) not open.
36. Let $f: R \rightarrow R$ be twice continuously differentiable function with $f(0)=f(1)=f^{\prime}(0)=0$ Then
(1) f " is the zero function
(2) $f^{\prime \prime}(0)$ is zero
(3) $f^{\prime \prime}(x)=0$ for some $x \in(0,1)$
(4) $f^{\prime \prime}$ never vanished
37. Which one of the following statements is not correct for a real valued function f ?
(1) If f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$, then f^{2} is also Riemann integrable on $[a, b]$
(2) If f^{2} is Riemann integrable on $[a, b]$, then f is also Riemann integrable on $[a, b]$
(3) If f^{3} is Riemann integrable on $[a, b]$ then f is also Riemann integrable on $[a, b]$
(4) If f is Riemann integrable on $[a, b]$, then $|f|$ is also Riemann integrable on $[a, b]$
38. If $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, \text { if } x \neq 0 \\ 1, \text { if } x=0\end{array}\right.$ then
(1) g is not continuous
(2) g is continuous but not differentiable
(3) g is differentiable
(4) g is not bounded
39. Let for each $n \geq 1, S_{n}$ be the open disc in R^{2}, with center at a point $(n, 0)$ and radius equal to n. Then $S=$ $\cup_{n \geq 1} S_{n}$ is
(1) $\left\{(x, y) \in R^{2}: x>0\right.$ and $\left.|y|<x\right\}$
(2) $\left\{(x, y) \in R^{2}: x>0\right\}$
(3) $\left\{(x, y) \in R^{2}: x<0\right.$ and $\left.|y|<2 x\right\}$
(4) $\left\{(x, y) \in R^{2}: x>0\right.$ and $\left.|y|<3 x\right\}$
40. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map. Choose the correct statements
(1) $f(A)$ is Bounded for all bounded subsets A to R
(2) f is bounded
(3) The images of f is an open subsets of \mathbb{R}
(4) $f^{-1}(A)$ is compact for all compact for all compact subsets A of B
41. If $V=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, then $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$ is equal to
(1) 0
(2) V
(3) 2 V
(4) 3 V
42. If $u=x \phi(y / x)+\Psi(y / x)$ where $\phi(y / x)$ and $\Psi(y / x)$ are two function of $\frac{y}{x}$ th $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$ is equal to
(1) 3
(2) 2
(3) 1
(4) 0
43. The envelope of the family of straight lines $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$, m bei parameter, is
(1) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(2) $x^{2}+y^{2}=a^{2}+b^{2}$
(3) $x^{2}+y^{2}=a^{2}-b^{2}$
(4) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
44. The value of the integral $\int_{0}^{1}\left(\log \frac{1}{y}\right)^{5} d y$ is
(1) $\Gamma(10)$
(2) $\Gamma(6)$
(3) $\Gamma(3)$
(4) $\Gamma(18)$
45. The value of the integral $\iint \frac{x y}{\sqrt{1-y^{2}}} d x$, $d y$ over the first quadrant of the circle $x^{2}+y^{2}-1$ is
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{5}$
(4) $\frac{1}{6}$
46. By changing the order of integration in the integral $\int_{0}^{4} \int_{x}^{2 \sqrt{x}} f(x, y) d x, d y$ it can be expressed as
(1) $\int_{0}^{4} \int_{y^{2} / 2}^{y} f(x, y) d y, d x$
(2) $\int_{0}^{2} \int_{y^{2} / 2}^{y} f(x, y) d y, d x$
(3) $\int_{0}^{4} \int_{y^{2} / 4}^{y} f(x, y) d y, d x$
(4) $\int_{0}^{4} \int_{y}^{y^{2} / 4} f(x, y) d y, d x$
47. The value of the integral $\int_{0}^{1} \int_{e^{x}}^{e} \frac{d x d y}{\log y}$ is
(1) e^{2}
(2) $e+1$
(3) e
(4) $e-1$
48. The real-valued function f, ϕ, Ψ are derivable in $[\alpha, b]$ then there exists at least one $c \in(a, b)$ such that
(1) $\left|\begin{array}{lll}f^{\prime}(a) & \phi^{\prime}(a) & \Psi^{\prime}(a) \\ f(b) & \phi(b) & \Psi(b) \\ f^{\prime}(c) & \phi^{\prime}(c) & \Psi^{\prime}(c)\end{array}\right|=0$
(2) $\left|\begin{array}{ccc}f^{\prime}(a) & \phi(a) & \Psi(a) \\ f(b) & \phi(b) & \Psi(b) \\ f^{\prime}(c) & \phi^{\prime}(c) & \Psi^{\prime}(c)\end{array}\right|=0$
(3) $\left|\begin{array}{ccc}f(a) & \phi(a) & \Psi(a) \\ f^{\prime}(b) & \phi^{\prime}(b) & \Psi^{\prime}(b) \\ f^{\prime}(c) & \phi^{\prime}(c) & \Psi^{\prime}(c)\end{array}\right|=0$
(4) $\left|\begin{array}{lll}f^{\prime}(a) & \phi^{\prime}(a) & \Psi^{\prime}(a) \\ f^{\prime}(b) & \phi^{\prime}(b) & \Psi^{\prime}(b) \\ f^{\prime}(c) & \phi^{\prime}(c) & \Psi^{\prime}(c)\end{array}\right|=0$
49. With the help of mean value the theorem, for $x>0,0<\theta<1, \log _{10}(x+1)$ can be expressed as
(1) $\frac{x \log _{10} e}{1+\theta x}$
(2) $\frac{x}{1+\theta x}$
(3) $\frac{\theta x}{1+x}$
(4) $\frac{\theta x}{(1+\theta x)}$
50. If $(x)=\sqrt{x}, \phi(x)=\frac{1}{\sqrt{x}}$ are defined on the interval [1,2], then the value of C satisfying Cauchy's mean value theorem is
(1) $\sqrt{3}$
(2) $\sqrt{2}$
(3) $2+\sqrt{2}$
(4) $1+\sqrt{2}$
51. The value of $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right]$ is
(1) 1
(2) 0
(3) ∞
(4) $\frac{1}{2}$
52. The value of $\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{1 / n}$ is
(1) 1
(2) e
(3) 0
(4) $\sqrt[n]{e}$
53. The series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{P}}$ is
(1) convergent if $p>1$ and divergent if $0<p \leq 1$
(2) convergent if $0<p<1$ and divergent if $p \geq 1$
(3) convergent $\forall p$
(4) divergent $\forall p$
54. For $a_{1}>0$ the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n+1}=1+\frac{1}{a_{n}} \forall n \geq 1$ converges to
(1) $\frac{\sqrt{5}}{2}$
(2) $\frac{\sqrt{5}+1}{2}$
(3) $\frac{\sqrt{5}-1}{2}$
(4) $\frac{1}{\sqrt{5}}$
55. If $f(x)=\left\{\begin{array}{c}\frac{1}{a^{n-1}}, \frac{1}{a_{n}}<x \leq \frac{1}{a^{n}-1}, n=1,2,3, \ldots, \text { and } a>I \\ 0, x=0\end{array}\right.$ then
(1) f is integrable on $[0,1]$ and $\int_{0}^{1} f d x=a$
(2) f is integrable on $[0,1]$ and $\int_{0}^{1} f d x=\frac{a}{a+1}$
(3) f is not integrable on $[0,1]$
(4) f is integrable on $[0,1]$ and $\int_{0}^{1} f d x=\frac{a+1}{a}$
56. If $f(x)=x[x]$ where $[x]$ denotes the greatest integer not greater than x then
(1) f is integrable on $[0,2]$ and $\int_{0}^{2} f d x=\frac{3}{2}$
(2) f is integrable on $[0,2]$ and $\int_{0}^{2} f d x=\frac{3}{2}$
(3) f is integrable on $[0,2]$ and $\int_{0}^{2} f d x=0$
(4) f is not integrable on $[0,2]$
57. The integral $\int_{a}^{b} \frac{1}{(x-a)^{n}(b-x)^{n}} d x$ converges iff
(1) $n>1$ and $m>1$
(2) $n<1$ and $m<1$
(3) $n>1$ and $m<1$
(4) $n<1$ and $m>1$
58. If $f(z)=u+i v$ is an analytic function where $z=x+i y$ and $u-v=e^{-x}[(x-y) \sin y-(x+y) \cos y]$ then $f(z)$ is
(1) $z e^{z}+c$
(2) $i z e^{z}+c$
(3) $i z e^{Z}+c$
(4) $z e^{-z}+c$
59. The value of $\oint_{c} \frac{z^{2}+1}{z(2 z-1)} d z$, where C is $|z|=1$ and $z=x+i y$, is
(1) $\frac{\pi i}{2}$
(2) $\frac{5 \pi i}{2}$
(3) $2 \pi i$
(4) $\frac{7 \pi i}{2}$
60. The number of roots of the equation $z^{7}-5 z^{3}+12=0$, lying between the circles $|z|=2$ is
(1) 3
(2) 7
(3) 4
(4) 0
61. The locus of the complex number z, satisfying equation $|z-1|+|z+1|=3$ is
(1) a line segment
(2) a circle
(3) an eillpse
(4) a straight line
62. Which one of the following iterative process cannot be used to determine the complex root of the equations? $f(x)=0$?
(1) Bisection method
(2) Secant method
(3) Muller's method
(4) Lin-Bairstow method
63. If a root of the equation $f(x)=0$ lies in the interval I then the condition under which the Newton-Raphson formula converges to the root in I is
(1) $|f(x)|\left|f^{\prime}(x)\right|=\left|f^{\prime \prime}(x)\right|^{2}, \forall x \in I$
(2) $|f(x)|\left|f^{\prime}(x)\right|<\left|f^{\prime \prime}(x)\right|^{2}, \forall x \in I$
(3) $|f(x)|\left|f^{\prime}(x)\right|>\left|f^{\prime \prime}(x)\right|^{2}, \forall x \in I$
(4) $|f(x)|\left|f^{\prime}(x)\right| \geq\left|f^{\prime \prime}(x)\right|^{2}, \forall x \in I$
64. If ω be the angular velocity at the nearest end of the major axis of the orbit of a planet with eccentricity e, then its period is
(1) $\frac{2 \pi}{\omega} \sqrt{\frac{1-e}{1+e}}$
(2) $\frac{2 \pi}{\omega} \sqrt{\frac{1+e}{1-e}}$
(3) $\frac{2 \pi}{\omega} \sqrt{\frac{1-e}{(1+e)^{3}}}$
(4) $\frac{2 \pi}{\omega} \sqrt{\frac{1+e}{(1-e)^{3}}}$
65. If the velocity at any point of a central orbit is $\frac{1}{n} t h$ of what it would be for a circular orbit at the same distance r, then the central force varies inversely as
(1) r^{n}
(2) $e^{2 n^{2}+1}$
(3) $r^{\pi^{2}}$
(4) $r^{\pi^{2}}-1$
66. If a particle describes the equiangular spiral $r=a e^{\theta \cot a}$, under a force F to the pole where a and α are constant then the law of force is proportional to
(1) $\frac{1}{r}$
(2) $\frac{1}{r}$
(3) $\frac{1}{r^{2}}$
(4) $\frac{1}{r^{4}}$
67. The rate of convergence of the iterative method $x_{k+1}=A x_{k}+\frac{\alpha B}{x_{k}^{2}}$ for computing $\alpha^{1 / 3}$ become as high as possible, if
(1) $A=\frac{1}{3}, B=\frac{1}{3}$
(2) $A=\frac{2}{3}, B=\frac{2}{3}$
(3) $A=\frac{1}{3}, B=\frac{2}{3}$
(4) $A=\frac{2}{3}, B=\frac{2}{3}$
68. In Givens method to calculated the eigenvalues for symmetric matrices, the maximum number of plane rotations required to brings a matrix of order n to its tri-diagonal form is
(1) $\frac{1}{2}(n-1)(n-2)$
(2) $(n-1)^{2}$
(3) $(n-2)^{2}$
(4) $\left(n^{2}-1\right)$
69. The radial and transverse velocities of a particle are non-zero constants, that the path of the particle is
(1) a spiral
(2) a circle
(3) a cardioid
(4) an ellipse
70. If the radial and transverse velocity of a particle at the point $(r, \theta) \mathrm{b}$ respectively λr and $\mu \theta$, where $\lambda \mu$ are constants, then the radial and transvers accelerations are respectively
(1) λ and μ
(2) $\lambda^{2} r-\frac{\mu^{2} \theta^{2}}{r}$ and $\mu \theta\left(\frac{\mu}{r}+\lambda\right)$
(3) $\lambda^{2} r+\frac{\mu^{2} \theta^{2}}{r}$ and $\mu \theta\left(\lambda-\frac{\mu}{r}\right)$
(4) $\lambda^{2} r-\frac{\mu^{2} \theta^{2}}{r}$ and $\mu \theta\left(\frac{\mu}{r}-\lambda\right)$
71. The Newton-Raphson algorithm to find square root of N is
(1) $x_{n+1}-\frac{1}{2}\left(\begin{array}{ll}2 x_{n} & N \\ x_{n}\end{array}\right)$
(2) $x_{n+1}=\frac{1}{2}\left(2 x_{n}+\frac{N}{x_{n}}\right)$
(3) $x_{n+1}=\frac{1}{2}\left(2 x_{n}-\frac{N}{x_{n}}\right)$
(4) $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{N}{x_{n}}\right)$
72. For given two points $(a, f,(a)),(b, f(b))$, the linear Lagrange polynomial $P(x)$ that passes throught these two point is given by
(1) $P(x)=\frac{(x-b)}{(a-b)} f(a)+\frac{(x-a)}{(a-b)} f(b)$
(2) $P(x)=\frac{(x-b)}{(a-b)} f(a)+\frac{(x-a)}{(b-a)} f(b)$
(3) $P(x)=\frac{(x-b)}{(b-a)} f(a)+\frac{(x-a)}{(b-a)} f(b)$
(4) $P(x)=\frac{(x-a)}{(b-a)} f(a)+\frac{(x-b)}{(a-b)} f(b)$
73. If a particle moves along a circle $r=2 a \cos \theta$ such that its acceleration towards the origin is always zero, then the transverse acceleration of the particles varies as
(1) $\operatorname{cosec}^{2} \theta$
(2) $\sin \theta$
(3) $\cos \theta$
(4) $\operatorname{cosec}^{5} \theta$
74. Let P be particle whose radial and transverse velocities as well as radial an transverse accelerations respectively proportional. If r is the radial distance then velocity is proportional to
(1) r
(2) $\log r$
(3) some power of radius vector
(4) $\exp (r)$
75. Let T_{H} be the time taken by a projectile up to the highest point and T be tl time of flight, then
(1) $T_{H}=\frac{2 T}{3}$
(2) $T_{H}=\frac{1}{2} T$
(3) $T_{H}=\frac{3 T}{2}$
(4) $T_{H}=2 T$
76. Let a particle be in SHM (Simple Harmonic Motion) between A and B and O the fixed middle point. Then as the particle moves beyond 0 ,
(1) velocity and acceleration both increase
(2) velocity and acceleration both decrease
(3) Velocity increases but acceleration decreases
(4) velocity decreases but acceleration increases
77. The rational approximation of the form $\frac{(a+b x)}{(1+c x)}$ to e^{x} is
(1) $\frac{\left(1+\frac{x}{2}\right)}{\left(1-\begin{array}{c}x \\ 2\end{array}\right)}$
(2) $\frac{\left(1-\frac{x}{2}\right)}{\left(1+\frac{x}{2}\right)}$
(3) $\frac{(2+x)}{\left(1-\frac{x}{2}\right)}$
(4) $\frac{(2-x)}{\left(1-\frac{x}{2}\right)}$
78. A canal is 40 m wide. The The depth y (in meter) of the canal at a distance x from one bank is given by the following :

$$
\begin{array}{ccccc}
x & 0 & 1020 & 30 & 40 \\
y & 0.0 & 3.55 .5 & .5 & 0.5
\end{array}
$$

The approximate area of cross-section in square metre of the canal using Simpson rule is
(1) 135.0
(2) 137.5
(3) 140.0
(4) 145.0
79. Approximating the first derivative of $f(t)$ as

$$
f^{\prime}(t)=\frac{4}{3 h}\left\{f\left(t+\frac{h}{2}\right)-f\left(t-\frac{h}{2}\right)\right\}-\frac{1}{6 h}\{f(t+h)-f(t)\}
$$

The order of error in the approximation is:
(1) two
(2) three
(3) four
(4) five
80. Adams-Bashforth-Moulton predictor formula for $\frac{d y}{d x}=f(x), y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}, y\left(x_{3}\right)=y_{3}$ is
(1) $y_{4}=y_{3}+\frac{h}{24}\left(59 f_{3}-55 f_{2}+37 f_{1}-9 f_{o}\right)$
(2) $y_{4}=y_{3}+\frac{h}{24}\left(55 f_{3}-59 f_{2}+37 f_{1}-9 f_{o}\right)$
(3) $y_{4}=y_{3}+\frac{h}{24}\left(55 f_{3}-59 f_{2}-37 f_{1}+9 f_{o}\right)$
(4) $y_{4}=y_{3}+\frac{h}{24}\left(59 f_{3}-55 f_{2}-37 f_{1}+9 f_{o}\right)$
81. A rocketis fired vertically upwards with a velocity u which exceeds $\sqrt{2 g h}$, where g is gravity and h is the height of a target. If t_{1} and t_{2} are the instants at which the rocket reaches the target then
(1) $t_{1}+t_{2}=\frac{2 u}{g}$
(2) $t_{1}-t_{2}=\frac{2 u}{g}$
(3) $t_{1}+t_{2}<\frac{2 u}{g}$
(4) $t_{1}-t_{2}>\frac{2 u}{g}$
82. Which one of the following is not referred as explicit method to solve $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$?
(1) Taylor's series method
(2) Picard's method
(3) Euler-Cauchy method
(4) Backward Euler method
83. If cube of side 4 meter is increased by 2% then the approximate increase in it volume is
(1) 2%
(2) 6%
(3) 8%
(4) 12%
84. If a force F is resolved into components P and Q making angles α and β respectively with it, then
(1) $P=\sin (\alpha+\beta) . F \cos \alpha, Q=\sin (\alpha+\beta) . F \cos \beta$
(2) $P=\frac{F \sin \alpha}{\sin (\alpha+\beta)} Q=\frac{F \sin \beta}{\sin (\alpha+\beta)}$
(3) $P=\frac{F \sin \alpha}{\sin (\alpha+\beta)} Q=\frac{F \sin \beta}{\sin (\alpha+\beta)}$
(4) $P=F \cos \alpha, Q=F \cos \beta$
85. Two forces F_{1} and F_{2} are acting at a point and are inclined to each other at an angle of 120°. if their resultant makes an angle 90° with the direction of F_{1} then
(1) $F_{1}=\sqrt{3} F_{2}$
(2) $F_{1}=F_{2}$
(3) $3 F_{1}=F_{2}$
(4) $2 F_{2}=F_{1}$
86. The general solution of differential equation $\left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0$ is (c being a constant)
(1) $x=2 y^{3}+c y^{-2}$
(2) $y=2 x^{3}+c x^{-2}$
(3) $y=2 x^{-3}+c x^{3}$
(4) $x=2 y^{-2}+c y^{3}$
87. The general solution of differential equation $\left(2 x^{2} y+y\right) d x+x d y=0$ is (c being a constant)
(1) $x+\log (x y)=c$
(2) $x^{2}+\log (x y)=c$
(3) $\log x+x y=c$
(4) $\log y+x y=c$
88. The orthogonal trajectories of the curves $x y=c$ is (a being a constant)
(1) $x^{2}+y^{2}=a^{2}$
(2) $x^{2}-y^{2}=a^{2}$
(3) $x^{2}+2 y^{2}=a^{2}$
(4) $2 x^{2}+y^{2}=a^{2}$
89. The general solution of differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$ is (A, B and C being constant)
(1) $y=A e^{x}+B e^{2 x}+C e^{3 x}$
(2) $y=A e^{x}+B x e^{x}+C e^{2 x}$
(3) $y=A e^{-x}+B e^{2 x}+C e^{3 x}$
(4) $y=A e^{-x}+B e^{x}+C x e^{x}$
90. Find the value of m for which $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$ is a solution of differential equation $m y^{\prime \prime}+2 y^{\prime}+3 y=$ $0\left\langle c_{1}\right.$ and c_{2} being constants \rangle
(1) $\frac{1}{2}$
(2) $-\frac{1}{2}$
(3) $\frac{1}{3}$
(4) $-\frac{1}{3}$
91. Let $y(x)$ be the solution of initial values problem $y^{\prime \prime}+2 y^{\prime}-3 y=0, y(0)=a, y^{\prime}(0)=3$. For which value of a $\lim _{x \rightarrow \infty} y(x)=0$
(1) 0
(2)1
(3) -1
(4) 2
92. The root of the indicial equation of differential equation $2 x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+y=0$ are
(1) 1 and $-\frac{1}{2}$
(2) 1 and $\frac{1}{2}$
(3) -1 and $\frac{1}{2}$
(4) -1 and $-\frac{1}{2}$
93. The value of $P^{\prime}{ }_{n}(1)$ where $P^{\prime}{ }_{n}(x)$ is first differential of Legendary polynomial of degree n is
(1) $\frac{1}{2} n(n+1)$
(2) $\frac{1}{2} n(n-1)$
(3) $\frac{1}{2} n^{2}(n+1)$
(4) $\frac{1}{2} n^{2}(n-1)$
94. The value of the Bessel's function $J_{1 / 2}(x)$ of order $\frac{1}{2}$ is
(1) $\sqrt{\frac{1}{2 \pi x}} \sin x$
(2) $\sqrt{\frac{2}{\pi x}} \sin x$
(3) $\sqrt{\frac{1}{2 \pi x}} \cos x$
(4) $\sqrt{\frac{2}{\pi x}} \cos x$
95. A solution of partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}=9 \frac{\partial^{2} u}{\partial y^{2}}$ is
(1) $\cos (x-3 y)$
(2) $x^{2}+y^{2}$
(3) $\sin (3 x-y)$
(4) $e^{-3 \pi x} \sin (\pi y)$
96. The partial differential equation for the surface $z=a x+b y$ is
(1) $z=p y+q x$
(2) $z=p y-q x$
(3) $z=p x+q y$
(4) $z=p x-q y$
97. The solution of partial differential equation $\left(D^{2}+2 D D^{\prime}+D^{2}\right) z=e^{2 x+3 y}$ is
(1) $z=\phi_{1}(y-x)+x \phi_{2}(y-x)+\frac{1}{25} e^{2 x+3 y}$
(2) $z=x \phi_{1}(y-x)+y \phi_{2}(y-x)+\frac{1}{5} e^{2 x+3 y}$
(3) $z=\phi_{1}(y-x)+x \phi_{2}(y-x)+\frac{1}{5} e^{2 x+3 y}$
(4) $z=x \phi_{1}(y-x)+y \phi_{2}(y-x)+\frac{1}{25} e^{2 x+3 y}$
98. The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}-8 z-45=0$ is cut by the plane $x-2 y+2 z=3$ is
(1) 3
(2) $\sqrt{3}$
(3) $4 \sqrt{5}$
(4) 80
99. The equation of right circular cylinder, which has guiding curve as the circle $x^{2}+y^{2}+z^{2}-\alpha^{2}=0 z-b, 0<$ $b<a$ and generators are parallel to z-axis is
(1) $x^{2}+y^{2}=a^{2}-b^{2}$
(2) $x^{2}+y^{2}+z^{2}=b^{2}$
(3) $x^{2}+y^{2}=b^{2}$
(4) $x^{2}+y^{2}+z^{2}=a^{2}-b^{2}$
100. The locus of the point of intersection of two mutually perpendicular tangent lines to the curve $\frac{l}{r}=1+\cos \theta$ is
(1) a line
(2) a parabola
(3) a circle
(4) an ellipse
101. The number of independent components of skew-symmetric covariant tensor of order two in an n-dimensional space is at most
(1) n
(2) n^{2}
(3) $\frac{n(n+1)}{2}$
(4) $\frac{n(n-1)}{2}$
102. The arc length of the curve $\gamma:[0,2 \pi] \rightarrow R^{3}, \gamma(t)=(3 \cos t, 3 \sin t, 4 t)$ is
(1) 3π
(2) 6π
(3) 10π
(4) 12π
103. The torsion of the curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3} \gamma(t)=(a$ cost, $a \sin t, a t)$ at point t is
(1) $\frac{a t}{a^{2}+c^{2}}$
(2) $\frac{c}{a^{2}+c^{2}}$
(3) $\frac{a t}{a^{2}+c^{2}}$
(4) $\frac{a}{a^{2}+c^{2}}$
104. Which one of the following surface has negative Gaussian curvature at some of its points ?
(1) a plane
(2) a Sphere
(3) an ellipsoid
(4) a torus
105. Which one of the following curve is not a regular curve?
(1) $\gamma(t)=\left(t, t^{2}\right)$
(2) $\gamma(t)=\left(e^{t}, t^{4}\right)$
(3) $\gamma(t)=\left(t^{2}, t^{4}\right)$
(4) $\gamma(t)=\left(2 t+1, e^{-t}\right)$
106. If k_{1}, k_{2} be principal curvatures of a surface at a point, then the normal curvature of the surface at the same point along a direction making an angle with the principal direction is given by
(1) $k_{1} \frac{\sqrt{3}}{2}$
(2) $k_{2} \frac{\sqrt{3}}{2}$
(3) $\frac{3 k_{1}+k_{2}}{4}$
(4) $\frac{k_{1}+3 k_{2}}{4}$
107. Which one of the following curves is parametrized by its arc length ?
(1) $\gamma(t)=(a \cos t, a \sin t)$
(2) $\gamma(t)=(t, t)$
(3) $\gamma(t)=\left(\operatorname{acos} \frac{t}{a}, \operatorname{asin} \frac{t}{a}\right)$
(4) $\gamma(t)=\left(\cos \frac{t}{a}, \sin \frac{t}{a}\right)$
108. The sum of interior angles of a geodesic triangle on the surface of a sphere radius R is
(1) less than π
(2) π
(3) greater than π
(4) not constant
109. If Γ_{y}^{h} denotes the Chirstoffel symbols of second Kind, then the values of $\Gamma_{i j}^{i}$ is
(1) $\frac{\partial g}{\partial x^{j}}$
(2) $\frac{1}{2} \frac{\partial g}{\partial x^{j}}$
(3) $\frac{1}{2} \frac{\partial}{\partial x^{j}}(\log g)$
(4) $\frac{\partial}{\partial x^{j}}(\log g)$
110. Consider the equation $A x=b$ where $A=\left[\begin{array}{ccc}2 & 3 & -1-1 \\ 4 & 1 & 1\end{array}\right]$ 2 n and $b=\left[\begin{array}{c}-1 \\ 9\end{array}\right]$, which one of the following is a basic solution ?
(1) $\left[0-\frac{11}{5} 0-\frac{28}{5}\right]$
(2) $\left[\begin{array}{llll}2 & 7 & 0 & 0\end{array}\right]$
(3) $\left[\frac{11}{5} \frac{4}{5} 000\right]$
(4) $\left[\begin{array}{lll}\frac{4}{3} & \frac{11}{3} & 0\end{array} 0\right]$
111. The set of all feasible solution of a linear programming problem is always a
(1) convex set
(2) open set
(3) closed set
(4) unbounded set
112. Which one of the following sets is not a convex set?
(1) $X=\left\{\left(x_{1}, x_{2}\right): 4 x_{1}^{2}+x_{2}^{2} \leq 36\right\}$
(2) $X=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 4, x_{2} \geq 2\right\}$
(3) $X=\left\{\left(x_{1}, x_{2}\right) x_{1}, x_{2} \leq 1, x_{1}, x_{2} \geq 0\right\}$
(4) $X=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}-3 \geq 0, x_{1} \geq 0, x_{2}>0\right\}$
113. Consider the LPP:

Maximize $\left(3 x_{1}+x_{2}+3 x_{3}\right)$ subject to
$2 x_{1}+x_{2}+x_{3} \leq 2$
$x_{1}+2 x_{2}+3 x_{3} \leq 5$
$2 x_{1}+2 x_{2}+x_{3} \leq 6$
$x_{1}, x_{2}, x_{3} \geq 0$
In solving this problem by revised simplex method, the basic feasible solution is
$\left.\begin{array}{l}\text { (1) }[0\end{array} 00 \begin{array}{llll} & 0 & 2 & 5 \\ \text { (2) }[2 & 5 & 6 & 0 \\ 0 & 0\end{array}\right]$
114. The dual of the following LPP's:

Maximize $2 x+3 y+4 z$ subject to
$x-5 y+3 z=7$
$2 x-5 y \leq 3$
$3 y-z \geq 5$
$x, y \geq 0, z$ is unrestricted
(1) Minimize $7 \lambda+3 \mu-5 v$

Subject to
$\lambda+2 \mu \geq 2$
$-5 \lambda-5 \mu-3 v \geq 3$
$3 \lambda+v=4$
$\mu, v \geq 0, \lambda$ is unrestricted
(2) Minimize $(-7 \lambda+3 \mu-5 v)$

Subject to
$\lambda+2 \mu \geq 2$
$-5 \lambda-5 \mu-3 v \geq 3$
$3 \lambda+v=4$
$\lambda \mu, v \geq 0$, is unrestricted
(3) Minimize $(-7 \lambda+3 \mu-5 v)$

Subject to
$\lambda+2 \mu \geq 2$
$-5 \lambda-5 \mu-3 v \geq 3$
$3 \lambda+v=4$
$\mu, v \geq 0, \lambda$ is unrestricted
(4) Minimize $(7 \lambda+3 \mu-5 v)$

Subject to
$\lambda+2 \mu \geq 2$
$-5 \lambda-5 \mu-3 v \geq 3$
$3 \lambda+v=4$
$\lambda, \mu, v \geq 0$, is unrestricted
115. For a balance transportation problem, which one of the following is false
(1) There are at least $m+n-1$ basic variables
(2) There are at most $m+n-1$ basic variables
(3) There are at least $m+n+1$ basis variables
(4) There are at most $m+n+1$ basic variables
116. The initial basic feasible solution of the following balanced transportation problem using lowest cost entry method is :

Destination

(1) $x_{13}=14, x_{21}=6, x_{22}=9, x_{23}=1, x_{32}=1, x_{34}=4$
(2) $x_{13}=14, x_{21}=6, x_{22}=10, x_{23}=15, x_{32}=5, x_{34}=4$
(3) $x_{13}=14, x_{21}=6, x_{22}=10, x_{23}=1, x_{32}=5, x_{34}=1$
(4) $x_{13}=14, x_{21}=6, x_{22}=9, x_{23}=5, x_{32}=5, x_{34}=1$
117. Consider the following minimal assignments problem:

Jobs		1	2	3	4
	I	12	30	21	15
	II	18	33	9	31
	III	44	25	24	21
	IV	23	30	28	14

Which one of the following is true solution?
(1) I $\rightarrow 1 \mathrm{II} \rightarrow 3 \mathrm{III} \rightarrow 2 \mathrm{IV} \rightarrow 4$
(2) I $\rightarrow 2 \mathrm{II} \rightarrow 1 \mathrm{III} \rightarrow 4 \mathrm{IV} \rightarrow 3$
(3) I $\rightarrow 4$ II $\rightarrow 2$ III $\rightarrow 2$ IV $\rightarrow 1$
(4) I $\rightarrow 1$ II $\rightarrow 4$ III $\rightarrow 2$ IV $\rightarrow 3$
118. The Fourier series of function $f(x)=|\sin x| o n \mid-\pi, \pi]$ will not contain
(1) constant term
(2) sine terms
(3) cosine terms
(4) Both sine and cosine terms
119. The Laplace transform of function $f(t)=\frac{\sin t}{t}$ is
(1) $\tan ^{-1} s$
(2) $\sin ^{-1} s$
(3) $\frac{1}{s^{2}+1}$
(4) $\tan ^{-1} \frac{1}{s}$
120. The inverse Laplace transform of the function $F(s)=\frac{s+1}{\left(s^{2}+2 s+2\right)^{2}}$ is
(1) $\frac{1}{2} e^{-t} t \sin t$
(2) $\frac{1}{2} e^{-t} \sin t$
(3) $\frac{1}{2} e^{-t} t \cos t$
(4) $\frac{1}{2} e^{-t} t^{2} \sin t$

IFAS Online Classes : https://www.ifasonline.com/MSC-ENTRANCE-EXAM/mathematics/msc-entrance-math-Exam.jsp
ifas contest : https://ifasonline.com/MSC-ENTRANCE-EXAM/mathematics/iit-jamLearnPlayWin.jsp
ifas test series : https://ifasonline.com/MSC-ENTRANCE-EXAM/mathematics/iit-jam-math-TestSeries.jsp

IFAS YouTube : http://youtube.com/c/IFASMaths
IFAS Facebook Page : https://www.facebook.com/IFASMaths/

IFAS Facebook Group : https://www.facebook.com/groups/IFASMaths

IFAS Telegram Channel : https://t.me/IFASMaths

IFAS Instagram : https://instagram.com/ifas mathematics

For more query and information please contact on this no. 9172266888/7248990393

Download free IFAS app from Play Store :
https://play.google.com/store/apps/details?id=com.ifasapp

Register For Free Live Lectures : https://ifasonline.com/register.jsp

