HYDERABAD CENTRAL UNIVERSITY (HCU)
 M.Sc. Mathematics Entrance-2014

Time : $\mathbf{2}$ Hours
Max. Marks: 100

Instructions:

(i) There are a total of $\mathbf{5 0}$ questions in Part-A and Part-B together.
(ii) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries $\mathbf{- 0 . 3 3}$ mark. Each question in Part-A has only one correct option.
(iii) There is no negative marking in Part-B. Each correct answer carries $\mathbf{3}$ marks. In Part-B some questions have more than one correct option. All the correct options have to be marked in OMR sheet other wise zero marks will be credited.

PART-A

1. Let $0 \neq \bar{v} \in \mathbb{R}^{2}$. For $0 \leq \theta<\pi$, let $A=\left(\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right)$. Then the angle between \bar{v} and $A \bar{v}$ is
(a) $\pi-\theta$
(b) θ
(c) $\frac{\pi}{2}-\theta$
(d) 0
2. Let $A \in M_{n}(\mathbb{R})$. If $A^{2}=-I$ (where I is the identity matrix), then
(a) n is even
(b) $A= \pm I$
(c) all the eigen values of A are in \mathbb{R}
(d) A is a diagonal matrix
3. Let $\bar{f}=(u, v, w)$ be a vector field which is solinoidal. If $\operatorname{curl}(\operatorname{curl} \bar{f})=0$, then
(a) $\operatorname{curl}(\bar{f})=0$
(b) $\operatorname{grad}(\bar{f} \cdot \bar{f})=0$
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=1$
(d) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$
4. Let $\bar{v}, \bar{w} \in \mathbb{R}^{3}$. Then a sufficient condition for $\bar{v} \times \bar{w} \neq 0$, is
(a) both \bar{v} and \bar{w} are non-zero
(b) dimension of the linear span of $\{\bar{v}, \bar{w}, \bar{v} \times \bar{w}\}$ is ≥ 2
(c) either \bar{v} or \bar{w} is non-zero
(d) none of the above
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)| \leq\left|x^{2}\right|$ for all $x \in \mathbb{R}$. Then
(a) f is continuous but not differentiable at $x=0$
(b) f is differentiable at $x=0$
(c) f is an increasing function
(d) f is a decreasing function
6. The number of points of continuity of the function $f=\left\{\begin{array}{cc}\left|x^{2}-1\right| & \text { if } x \text { is irrational, } \\ 0 & \text { if } x \text { is rational }\end{array}\right.$
(a) 0
(b) 1
(c) 2
(d) infinite
7. The number of words formed by permuting the letters $\mathrm{L}, \mathrm{O}, \mathrm{C}, \mathrm{K}, \mathrm{U}, \mathrm{P}$ such that neither 'LOCK' nor 'UP' appears in any such arrangement is
(a) $6!-4!-2!+1$
(b) $6!-5!-3!+2$
(c) $6!-5!-3!+1$
(d) $6!-2!+1$
8. The domain of the real-valued function $f(x)=\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{6-x}}$ is
(a) $(-\infty, \infty) \backslash\{-1,6\}$
(b) \mathbb{R}
(c) $(-\infty, 6) \cap(-1, \infty)$
(d) $(-1,6)$
9. Let G be a group with identity element e, and N be a normal subgroup. Let the index of N is G be 12 , i.e., $[G: N]=12$. Then
(a) $x^{12}=e$ for all $x \in N$
(b) $x^{12}=e$, the identity element in G, for all $x \in G$
(c) $x^{24} \in N$ for all $x \in G$
(d) none of the above

CAREER ENDEAVOUR
10. If $\left\{a_{n}\right\}$ is a sequence converging to l. Let $b_{n}=\left\{\begin{array}{ll}a_{2 n}, & \text { if } n \text { is odd, } \\ a_{3 n}, & \text { if } n \text { is even }\end{array}\right.$. Then the sequence $\left\{b_{n}\right\}$
(a) need not converge
(b) should converge to 0
(c) should converge to $2 l$ or to $3 l$
(d) should converge to l
11. Two fair dice 1 red and 1 blue are rolled. The probability that the sum of the numbers that show up on the two dice is a prime number is
(a) $7 / 18$
(b) $7 / 36$
(c) $15 / 36$
(d) $29 / 72$
12. Let V be a vector space of dimension n over \mathbb{R} and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V . Let σ be a permutation of the numbers $\{1, \ldots, n\}$, i.e., $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a bijective map. Then the linear transformation defined by $T\left(v_{i}\right)=v_{\sigma(i)}$ is
(a) 1-1 but not onto
(b) onto but not 1-1
(c) neither 1-1 nor onto
(d) an isomorphism on V
13. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in \mathbb{R} such that $\lim _{n \rightarrow \infty} x_{n}=2$ and $\lim _{n \rightarrow \infty} y_{n}=-2$. Then
(a) $x_{n} \geq y_{n}$ for all $n \in \mathbb{N}$
(b) $x_{n}^{2} \geq y_{n}$ for all $n \in \mathbb{N}$
(c) there exists an $m \in \mathbb{N}$ such that $\left|x_{n}\right| \leq y_{n}^{2}$ for all $n>m$
(d) there exists an $m \in \mathbb{N}$ such that $\left|x_{n}\right|=\left|y_{n}\right|$ for all $n>m$
14. Let $\left\{x_{n}\right\}$ be an increasing sequence of irrational numbers in [0, 2]. Then
(a) $\left\{x_{n}\right\}$ converges to 2
(b) $\left\{x_{n}\right\}$ converges to $\sqrt{2}$
(c) $\left\{x_{n}\right\}$ converges to some number in $[0,2]$
(d) $\left\{x_{n}\right\}$ may not converge
15. Let X be a set. For $A \subset X$, let $A^{c}=X \backslash A$. The correct statement for $A, B \subset X$ is
(a) $A \backslash B=B^{c} \backslash A^{c}$, always
(b) If $A \backslash B=B^{c} \backslash A^{c}$ then $A \subset B$ or $B \subset A$
(c) If $A \backslash B=B^{c} \backslash A^{c}$ then $A \cap B=\phi$
(d) If $A \backslash B=B^{c} \backslash A^{c}$ then $A=X$ or $B=X$
16. The value of $\int_{0}^{2 \sqrt{\pi}}\left|\pi-x^{2}\right| d x$ is
(a) $2 \pi \sqrt{\pi}$
(b) $2 \sqrt{\pi}$
(c) 2π
(d) none of the above
17. Let $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and ϕ be a homogeneous function with degree 3 . Then $\operatorname{div}(\bar{r} \phi)$ is
(a) 3ϕ
(b) 6ϕ ENDE (c) 9ϕ
(d) 27ϕ
18. Let $f:[-2,5] \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{6}+3 x^{2}+60$. Then
(a) f is a bounded function
(b) there exists a $c \in[-2,5]$ such that $f(c)=0$
(c) f is increasing
(d) f is decreasing
19. Write the logical negation of the following statement about a sequence $\left\{a_{n}\right\}$ of real numbers:
"For all $n \in \mathbb{N}$ there exists an $m \in \mathbb{N}$ such that $m>n$ and $a_{m} \neq a_{n}$
(a) There exists an $n \in \mathbb{N}$ such that $a_{m}=a_{n}$ for all $m>n$
(b) For all $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $m>n$ and $a_{m}=a_{n}$
(c) There exists $n \in \mathbb{N}$ such that $a_{m} \neq a_{n}$, for all $m>n$
(d) There exists $n \in \mathbb{N}$ such that $a_{m}=a_{n}$, for all $m \leq n$
20. Let G be a group of order 6 . Then
(a) G has 2 possibilities (upto isomorphism)
(b) G is cyclic
(c) G is abelian but not cyclic
(d) there is not sufficient information to determine G
21. The value of $\int_{0}^{1}\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots+\frac{(-1)^{n} x^{n}}{n!}+\ldots\right) e^{x} d x$ is
(a) 0
(b) e
(c) 1
(d) not defined
22. The general solution of the differential equation $y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y-4=0$ is
(a) $a e^{2 x}-b x e^{2 x}-c e^{x}$
(b) $e^{2 x}+x e^{2 x}-e^{x}$
(c) $a e^{2 x}+b e^{x}$
(d) $a e^{x}+b\left(e^{2 x}+x e^{2 x}\right)$
23. The number of common tangents to the spheres $x^{2}+y^{2}+z^{2}-2 x-4 y+6 z+13=0$ and $x^{2}+y^{2}+z^{2}-6 x-2 y+2 z-5=0$ is
(a) 0
(b) 1
(c) 3
(d) 1
24. Let $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x}, & \text { if } x>0 \\ \cos x, & \text { if } x \leq 0\end{array}\right.$. Then,
(a) f is continuous but not differentiable at 0
(b) f is differentiable at 0
(c) f is not continuous at 0
(d) f is neither integrable nor continuous 0
25. The least positive integer n such that every integer is greater than n is of the form $2 a+11 b$ for some positive integers a and b is
(a) 13
(b) 23
(c) 35
(d) 44

PART-B

26. Let $f(x)=\max \{\sin x, \cos x\}$, for $x \in \mathbb{R}$. Then
(a) f is discontinuous at $(2 n+1) \pi / 4, n \in \mathbb{Z}$
(b) f is continuous everywhere
(c) f is differentiable everywhere
(d) f is differentiable everywhere except at $(4 n+1) \pi / 4, n \in \mathbb{Z}$
27. $\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{3 n}\right)=$
(a) 0
(b) $\log 2$
(c) $\log 3$
(d) ∞
28. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $(f(x))^{2}=1+\int_{0}^{x} f(t) d t$. Then $f(x)=$
(a) $\frac{x}{2}-1$
(b) $\frac{x}{2}+1$
(c) $\frac{x}{2}$
(d) $\frac{x}{2} \pm 1$
29. Let $A \neq \pm I$ be a 2×2 matrix over \mathbb{R} whose square is I. Then which of the following statements are correct
(a) A is a diagonal matrix
(b) sum of diagonal elements of A is 0
(c) there are infinitely many such matrices
(d) 1 must be an eigen value
30. Let $f:(0, \pi / 2) \rightarrow \mathbb{R}$ given by $f(x)=\sin x+\cos 2 x$ is
(a) increasing in $(0, \pi / 4)$
(b) decreasing in $(0, \pi / 4)$
(c) has a minimum in $(0, \pi / 4)$
(d) has a maximum in $(0, \pi / 4)$
31. The numbers $0,1,2, \ldots, 9$ are arranged randomly (without repetitions) in a row to get a 10 -digit number greater than 10^{9}. What is the probability that the number so obtained is a multiple of 5 ?
(a) $\frac{8 \times 8!}{9 \times 9!}$
(b) $\frac{2 \times 9!}{9 \times 9!}$
(c) $\frac{2 \times 9!}{10!}$
(d) $\frac{8 \times 8!}{9 \times 9!}+\frac{9!}{9 \times 9!}$
32. Let f, g be Riemann integrable on $[a, b]$. Define, $h(x):=\min (f(x), g(x))$ and $l(x):=\int_{a}^{x} f(t) d t$ for $x \in[a, b]$. Then
(a) h need not be Riemann integrable but l always is
(b) l need not be Riemann integrable but h always is
(c) h, l are Riemann integrable, always.
(d) whenever h and l are Riemann integrable, $\int_{a}^{x} h(t) d t \leq l(x)$ for all $x \in(a, b)$
33. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Which of the following are sufficient conditions for f to have a fixed point in $[0,1]$?
(a) $f(0)=f(1)$
(b) $f(1)<0<f(0)$
(c) $0<f(1)<f(0)$
(d) $f(0)<0<1<f(1)$
34. Let $x_{n} \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} x_{n}=-5$. Then
(a) $\lim _{n \rightarrow \infty} x_{n}=0$
(b) there exists an $m \in \mathbb{N}$ such that $x_{n} \leq 0$ for all $n>m$
(c) $\sum_{n=1}^{\infty}\left|x_{n}\right|=5$
(d) $\left|x_{n}\right| \leq 5$ for all $n \in \mathbb{N}$
35. Which of the following series are convergent?
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}+\frac{1}{2}}{n}$
(b) $\sum_{n=1}^{\infty} e^{-n} n^{2}$
(c) $\sum_{n=1}^{\infty} \frac{1+2+\ldots+n}{1^{2}+2^{2}+\ldots+n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{1 \cdot 2.3}{4.5 \cdot 6}+\frac{7.8 .9}{10.11 .12}+\ldots$
36. In a class with 200 students, all the students know either Hindi, English or Telugu (and no other language). Of them, 100 know English, 150 know Telugu, 80 know Hindi, 50 know both Telugu and Hindi, 40 know only Telugu and no other language, 10 know all the three languages. Which of the following statements are correct
(a) 30 students know only English and no other language
(b) 110 know atleast two languages
(c) 60 know Hindi but not English
(d) 110 know exactly two languages
37. For a group G, which of the following statements are true?
(a) If $x, y \in G$ such that order of x is 3 , order of y is 2 then order of $x y$ is 6 .
(b) If every element is of finite order in G then G is a finite group
(c) If all subgroups are normal in G then G is abelian
(d) If G is abelian then all subgroups of G are normal
38. Let V be the vector space of all polynomials with coefficients in \mathbb{R}, i.e., $V=\mathbb{R}[X]$. Then which one of the following $T: V \rightarrow V$ are not linear transformations: for $f(X)$ in V , define $T(f(x))$ as
(a) $f\left(X^{2}\right)$
(b) $f(X)^{2}$
(c) $X^{2} f(x)$
(d) $f\left(X^{2}+1\right)$
39. Let S, T and U be three sets of horses. Let U be the set of all white horses. If all the horses in the set S are white and if no horse in the set T is black, then it necessarily follows that
(a) S and T are disjoint
(b) $S \subset U$
(c) $U \subset T$
(d) $S \cap T=U$
40. For the real number system, which of the following statements are true:
(a) let $x, y \in \mathbb{R}$ such that $0<x<y$ then there exists an $n \in \mathbb{N}$ such that $y<n x$
(b) let $x, y \in \mathbb{R}$ such that $x<y$ then there exists an $r \in \mathbb{Q}$ such that $x<r<y$
(c) let $x, y \in \mathbb{R}$ such that $x<y$ then there exists an $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ such that $x<\alpha<y$
(d) For $y \in \mathbb{R}$ such that $y>0$ there exists an $n \in \mathbb{N}$ such that $n \leq y<n+1$
41. The value of α such that the sum of the squares of the roots of $x^{2}-(\alpha-2) x-\alpha-1$ is minimum is
(a) 0
(b) 1
(c) $1 / \sqrt{2}$
(d) 4
42. An integrating factor for $y d x+\left(x-2 x^{2} y^{3}\right) d y=0$ is
(a) $\frac{1}{x^{2}+y^{2}}$
(b) $\frac{1}{x+y}$
(c) $e^{\frac{1}{x^{2} y^{2}}}$
(d) $\frac{1}{x^{2} y^{2}}$
43. Let $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$, which of the following statements are true:
(a) There exists a non constant vector valued function \bar{f} such that \bar{f} is both irrotational and solinoidal
(b) $\operatorname{div}\left(\operatorname{curl}\left(\bar{r}|\bar{r}|^{2}\right)=0\right.$
(c) $\operatorname{curl}\left(\operatorname{grad}\left(|\bar{r}|^{6}\right)\right)=0$
(d) If \bar{f} is solinoidal then $\operatorname{div}\left(|\bar{r}|^{2} \bar{f}\right)=2 \bar{r} \cdot \bar{f}$
44. Let B be the unit sphere in \mathbb{R}^{3}. The value of $\iint_{B}\left(x^{2}+2 y^{2}-3 z^{2}\right) d S$ is
(a) 4π
(b) $\frac{4}{3} \pi$
(c) 6π
(d) none of the above
45. Let $A, B \subset[0,1]$ be two uncountable sets. Which of the following are false statements
(a) If $A \cap B=\phi$, then either $\sup (A) \leq \inf B$ or $\sup B \leq \inf A$
(b) If $A \cap B=\phi$, then $[0,1] \backslash(A \cap B)$ is countable
(c) If $\inf A=\inf B$ and $\sup A=\sup B$, then $A \cap B \neq \phi$
(d) If $A \subset B$, then $\mathrm{B} \backslash \mathrm{A}$ is countable
46. The value of λ such that the plane $2 x-y+\lambda z=0$ is a tangent plane to the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z+2=0$ is
(a) 4
(b) 1
(c) 2
(d) -2
47. The distance between the straight lines $\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{1}$ and $\frac{x+1}{2}=\frac{y+1}{1}=\frac{z+1}{1}$ is is
(a) $\frac{\sqrt{21}}{3}$
(b) $\frac{21}{9}$
(c) 0
(d) impossible to find from the given data
48. Let V be a 3-dimensional vector space over \mathbb{C}. Let $T: V \rightarrow V$ be a linear transformation whose characteristic polynomials is $(X-2)(X-1)(X+1)$. Let B be a basis of V . Then which of the following are correct?
(a) The matrix of T w.r.t. B is conjugate to $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) The matrix of T^{-1} w.r.t. B is conjugate to $\left(\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) The matrix of T w.r.t. B is conjugate to $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$
(d) The matrix of T w.r.t. B is conjugate to $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
49. Let S be the group of all permutation of the letters U, N, I, V, E, R, S, I, T, Y such that the letter 'I' is fixed. Then
(a) There exists elements of order 21 and of order 11
(b) There exists an element of order 21 and no element of order 11
(c) There is an element of order 11 and no element of order 21
(d) There are no elements of order 11 or or order 21
50. The least positive integer r such that $\binom{2014}{r}$ is a multiple of 10 is
(a) 5
(b) 10
(c) 11
(d) 14

HYDERABAD CENTRAL UNIVERSITY (HCU)
 M.Sc. Mathematics Entrance-2014

ANSWER KEY

PART-A

1.	(c)	2.	(a)	3.	(d)	4.	(b)
6.	(c)	7.	(b)	8.	(d)	9.	(_)
11.	(c)	12.	(d)	13.	(c)	14.	(b)
16.	(b)	17.	(b)	18.	(a)	19.	(a)
21.	(c)	22.	(a)	(a)	23.	(a)	
2.	(_)	24.	(a)	25.	(b)		

26. (b, d)
27. (c)
28. (d)
29. (c)
30. (c, d)
31. (d)
32. (d)
33. (_)
\qquad
34. (a, b, c, d)
35. (d)
36. (d)
37. (b)

-

48. (a, b)
49. (d)
50. (b)
51. (b, d)
52. (a)
53. $(\mathrm{a}, \mathrm{b}, \mathrm{c})$
54. (_)

$-$

