HYDERABAD CENTRAL UNIVERSITY (HCU)
 M.Sc. Mathematics Entrance - 2010

Time : $\mathbf{2}$ Hours
Max. Marks: 75

Instructions:

(i) There are a total of $\mathbf{5 0}$ questions in Part-A and Part-B together.
(ii) Part-A : Each question carry 1 Mark. $\mathbf{0 . 3 3}$ marks will be deducted for each wrong answer. There will be no penalty if the questions if left unanswered.
(iii) Part-B : Each question carries $\mathbf{2}$ Marks. $\mathbf{0 . 6 6}$ marks will be deducted for a wrong answer. There will be no penalty if the questions if left unanswered.

PART-A

The set of real numbers is denoted by \mathbb{R}, the set of complex numbers by \mathbb{C}, the set of rational numbers by \mathbb{Q}, the set of integers by \mathbb{Z}, and the set of natural numbers by \mathbb{N}.

1. Let $f(x)=\cos |x|$ and $g(x)=\sin |x|$ then
(a) both f and g are even functions
(b) both f and g are odd functions
(c) f is an even function and g is an odd function
(d) f is an odd function and g is an even function
2. The sequence $\left\{(-1)^{n}\left(1+\frac{1}{n}\right)\right\}$ is
(a) bounded below but not bounded above
(b) bounded above but not bounded below
(c) bounded
(d) not bounded
3. If $f(x)=\left\{\begin{array}{cc}\exp (x)-1-x, & x \neq 0 \\ 0, & x=0,\end{array}\right.$ then $f^{\prime}(0)$ is
(a) 0
(b) 1
(c) $1 / 2$
(d) none of these
4. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix with integer entries such that $b \neq 0$. If $A^{2}+A+I_{2}=0$ then
(a) $a^{2}-a-b c=1$
(b) $a^{2}-a-b d=1$
(c) $a^{2}+a+b c=-1$
(d) $a^{2}+a-b c=-1$
5. The number of points at which the function
$f(x)=|(|x|-3) \sin (\pi x)|+\left|\left(x^{2}-1\right)\left(x^{3}-27\right)\right|$ takes zero value is
(a) 1
(b) 2
(c) 3
(d) 4
6. Let $f(x)=\left\{\begin{array}{cc}2 x, & \text { if } x \text { is irrational, } \\ x+3, & \text { if } x \text { is rational, }\end{array}\right.$ be a function defined from \mathbb{R} to \mathbb{R}. Then the discontinuities of f are
(a) all rational numbers
(b) all irrational numbers
(c) $\mathbb{R} \backslash\{2\}$
(d) $\mathbb{R} \backslash\{3\}$
7. Consider the system of equations $A X=0, B X=0$ where A and B are $n \times n$ matrices and X is a $n \times 1$ matrix. Which of the following statements are true.
(i) $\operatorname{det}(A)=\operatorname{det}(B)$ implies that the two systems have the same solutions
(ii) The two systems have the same solutions implies $\operatorname{det}(A)=\operatorname{det}(B)$
(iii) $\operatorname{det}(A)=0 \neq \operatorname{det}(B)$ implies that the two systems can have different solutions
(a) All are true
(b) (i) is true
(c) (iii) is true
(d) (i) and (ii) are true
8. $\quad \int \frac{(x+1) \exp (x)}{\cos ^{2}(x \exp (x))} d x$ is equal to
(a) $-\cot (x \exp (x))+C$
(b) $\tan (x \exp (x))+C$
(c) $\log (\sec (x \exp (x))+C$
(d) $\cos (x \exp (x))+C$
9. If $f(x)=x^{3}-2 x^{2}$ in $(0,5)$ then the value of c to satisfy the Mean Value theorem is
(a) 2
(b) 3
(c) 4
(d) None of these
10. A random variable X takes the values $-1,0$ and 1 with probabilities $1 / 3$ each. Then the mean value of X is
(a) 0
(b) 1
(c) 0.5
(d) 0.52
11. Two numbers are drawn without replacement from $1,2, \ldots ., 10$. The probability that their sum is an even number strictly lies in
(a) $(0,1 / 3]$
(b) $(1 / 3,1 / 2]$
(c) $(1 / 2,3 / 4]$
(d) $(3 / 4,1]$
12. $\lim _{x \rightarrow-1} \frac{\sqrt{2 x+3}-1}{\sqrt{5+x}-2}$ is equal to
(a) 4
(b) 3
(c) 2
(d) None of these
13. For $X, Y \subset \mathbb{R}$, define $X+Y=\{x+y / x \in Y, y \in Y\}$. An example where $X+Y \neq \mathbb{R}$ is
(a) $X=\mathbb{Q}, Y=\mathbb{R} \backslash \mathbb{Q}$
(b) $X=\mathbb{Z}, Y=[1 / 2,1 / 2]$
(c) $X=(-\infty, 100], Y=\{p \in \mathbb{N} / p$ is prime $\}$
(d) $X=(-\infty, 100], Y=\mathbb{Z}$
14. Let $f:[0,5] \rightarrow \mathbb{R}$ be continuous function with a maximum at $x=2$ then
(a) the derivative of f at 2 may not exist
(b) the derivative of f at 2 must not exist and be nonzero
(c) the derivative of f at 2 must not exist and be zero
(d) the derivative of f at 2 can not exist
15. The perimeter of the Cardiod $r=a(1+\cos \theta)$ is
(a) $2 a$
(b) $4 a$
(c) $8 a$
(d) none of these
16. If $P(x)=x^{3}+7 x^{2}+6 x+5$ then
(a) P has no real root
(b) P has three real roots
(c) P has exactly one negative real root
(d) P has exactly two complex roots
17. The number of diagonal 3×3 complex matrices A such that $A^{3}=I$ is
(a) 1
(b) 3
(c) 9
(d) 27
18. The number of subgroups of order 4 in a cyclic group of order 12 is
(a) 0
(b) 1
(c) 2
(d) 3
19. Let G be an abelian group and let $f(x)=x^{2}$ be an automorphism of G if G is
(a) finite
(b) finite cyclic
(c) prime order
(d) prime order ≥ 7
20. The series $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
(a) converges to 1
(b) converges to $1 / 2$
(c) converges to $3 / 4$
(d) does not converge
21. The sequence $\left\{1+\sum_{j=1}^{n} \frac{(-1) j}{2 j+1}\right\}$ is ECR ENDEAVOUR
(a) unbounded and divergent
(b) bounded and divergent
(c) unbounded and convergent
(d) bounded and convergent
22. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{cl}\frac{1-x}{1-x, x}, & |x|<1, \\ x^{2}, & |x| \geq 1\end{array}\right.$ is
(a) continuous at all points
(b) not continuous at $x= \pm 1$
(c) differentiable at all points
(d) none of these
23. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}\right)$. Then an eigenvalue for T is
(a) 0
(b) 1
(c) 2
(d) 3
24. The solutions of $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0, x \neq 0$ are
(a) $\cos (\log x)$, and $\sin (\log x)$
(b) $\cos (\log x)$, and $\sin \left(\log x^{2}\right)$
(c) $\cos \left(\log x^{2}\right)$, and $\sin (\log x)$
(d) $\cos (2 \log x)$, and $\sin (2 \log x)$
25. The series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n}$
(a) converges in $(-1,1)$
(b) converges in $[-1,1]$
(c) converges in $[-1,1)$
(d) converges in $(-1,1]$

PART-B

26. The integrating factor of the differential equation $\left(y^{2}-x^{2} y\right) d x+x^{3} d y=0$ is
(a) $(x y)^{-1}$
(b) $(x y)^{-2}$
(c) $x y$
(d) $x^{3} y^{3}$
27. An example of an infinite group in which every element has finite order is
(a) non-singular 2×2 matrices with integer entries
(b) $(\mathbb{Q} / \mathbb{Z},+)$
(c) the invertible elements in \mathbb{Z} under multiplication
(d) the Quarternion group
28. The value of the determinant $\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$ is
(a) 0
(b) 1
(c) 2
(d) none of these
29. Three girls G_{1}, G_{2}, G_{3} and 3 boys B_{1}, B_{2}, B_{3} are made to sit in a row randomly. The probability that at lest two girls are next to each other is
(a) 0
(b) $1 / 10$
(c) $1 / 20$
(d) $9 / 10$
30. 3 red balls (all alike), 4 blue balls (all alike) and 3 green balls (all alike) are arranged in a row. Then the probability that all 3 red balls are together is
(a) $1 / 15$
(b) $1 / 10$!
(c) $8!/ 10$!
(d) $3 / 10$!
31. The equation $|x-1|+|x|+|x+1|=x+2, x \in \mathbb{R}$ has
(a) no solution
(b) only one solution
(c) only two solutions
(d) infinitely many solutions
32. A natural number ' n ' is said to be "petty" if all its prime divisors are $<\sqrt{n}$. A natural number is square free if the square of a prime can not divide it. Then
(a) Every square free number is petty
(b) All even numbers are petty
(c) There exists an infinite numbers which are petty
(d) Square of a prime number is petty
33. For the sequence $\left\{\sqrt{n}+\frac{(-1)^{n}}{\sqrt{n}}\right\}$ of real numbers
(a) the greatest lower bound and least upper bound exist
(b) the greatest lower bound exists but not least upper bound
(c) the least upper bound exists but not the greatest lower bound
(d) neither the greatest lower bound nor the least upper bound exist
34. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and consider the following
(i) $|f(x)-f(y)| \leq 1, \forall x, y \in \mathbb{R}$ with $|x-y| \leq 1$
(ii) $\left|f^{\prime}(x)\right| \leq 1, \forall x \in \mathbb{R}$

Then we have
(a) (i) implies (ii) but (ii) does not imply (i)
(b) (ii) implies (i) but (i) does not imply (ii)
(c) (i) implies (ii) and (ii) implies (i)
(d) (i) does not imply (ii) and (ii) does not imply (i)
35. Let $U=\{(a, b, c, d) / a+b=c+d\}, V=\{(a, b, c, d) / a=b, c=d\}$ be subspaces of \mathbb{R}^{4}. Then the dimensions U and V are
(a) 1 and 2 respectively
(b) 2 and 3 respectively
(c) 3 and 2 respectively
(d) 3 and 4 respectively
36. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous function and define $g:[0,1] \rightarrow \mathbb{R}$ as $g(x)=(f(x))^{2}$. Then
(a) $\int_{0}^{1} f d x=0 \Rightarrow \int_{0}^{1} g d x=0$
(b) $\int_{0}^{1} g d x=0 \Rightarrow \int_{0}^{1} f d x=0$
(c) $\int_{0}^{1} g d x=\left(\int_{0}^{1} f d x\right)^{2}$
(d) $\int_{0}^{1} f d x \leq \int_{0}^{1} g d x$
37. Let X be a set, $\left\{A_{\alpha} / \alpha \in I\right\}$ be a collection of subsets of X and $f: X \rightarrow X$ be a function. Then we have $f\left(\bigcap_{\alpha \in I} A_{\alpha}\right)=\bigcap_{\alpha \in I} f\left(A_{\alpha}\right)$ if
(a) X is finite
(b) I is finite
(c) f is one-one
(d) f is onto
38. The value of the integral $\int_{0}^{1} \log (\sqrt{1+x}+\sqrt{1-x}) d x$ is
(a) $\log \sqrt{2}-1$
(b) $1-\log \sqrt{2}$
(c) $\log \sqrt{2}+1 / 2+\pi / 4$
(d) $\log \sqrt{2}-1 / 2+\pi / 4$
39. The derivative of the function $y=\sin ^{-1}\left(\sqrt{\frac{x-1}{x+1}}\right)+\sec ^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right)$ is
(a) -1
(b) 0
(c) 1
(d) none of these
40. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=c\left(x_{1}-x_{2}, x_{2}-x_{3}, x_{3}-x_{4}\right)$. Then, which of the following statements are true?
(i) $\operatorname{dim} \operatorname{Ker}(T)=1$ if $c \neq 0$
(ii) $\operatorname{dim} \operatorname{Ker}(T)=4$ if $c=0$
(iii) $\operatorname{dim} \operatorname{Ker}(T)=1$ if T is onto
(a) (i) and (ii)
(b) (ii) alone
(c) (ii) and (iii)
(d) (i), (ii) and (iii)
41. Let S_{1} and S_{2} be two series defined for $x \in(-1,1)$ as $S_{1}=\sum_{n=0}^{\infty}(\sin n) x^{n}$ and $S_{2}=\sum_{n=0}^{\infty}(\sin n+\cos n) x^{n}$ then
(a) S_{1} and S_{2} are convergent
(b) S_{1} and S_{2} are bounded but are not convergent
(c) S_{1} is convergent, S_{1} but S_{2} is only bounded
(d) S_{1} and S_{2} are divergent
42. If $P=\left[\begin{array}{lll}3 & -3 & 3 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ then P is invertible and P^{-1} is equal to
(a) $\left(P^{2}+P+I\right) / 3$
(b) $\left(P^{2}+P-I\right) / 3$
(c) $\left(P^{2}-P+I\right) / 3$
(d) $\left(P^{2}-P-I\right) / 3$
43. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be two convergent real sequences and let $z_{n}=\max \left\{x_{n}, y_{n}\right\}$ for each $n \in \mathbb{N}$. Then
(a) $\left\{z_{n}\right\}$ is convergent
(b) $\left\{z_{n}\right\}$ is bounded but may not be convergent
(c) $\left\{z_{n}\right\}$ may not be convergent but $\left\{z_{n}\right\}$ has a convergent sub-sequence
(d) $\left\{z_{n}\right\}$ is convergent if and only if $\exists n_{0} \in \mathbb{N}$ э $x_{n}=y_{n} \forall_{n} \geq n_{0}$
44. The solution of the differential equation $y^{\prime}-y=x y^{5}$ is
(a) $y=(-x+c \exp (-4 x)+1 / 4)^{4}$
(b) $y=(-x+c \exp (-4 x)+1 / 4)^{-4}$
(c) $y=(-x+c \exp (-4 x)+1 / 4)^{-1 / 4}$
(d) $y=(-x+c \exp (-4 x)+1 / 4)^{1 / 4}$
45. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(n)=n, \forall n \in \mathbb{Z}$. Then
(a) f is identity
(b) $|f(x)| \leq x, \forall x \in \mathbb{R}$
(c) $f(x)>0, \forall x \in(0, \infty)$
(d) none of these
46. Let $\{u, v, w\}$ be a linearly independent set in the vector space \mathbb{R}^{3} and let $X=\operatorname{span}\{u, v+w\}$ and $Y=\operatorname{span}\{w, u+v\}$. Then the dimension of $X \cap Y$ is
(a) 0
(b) 1
(c) 2
(d) can not be found from the information
47. Let $f(x)=x|x|$ and $g(x)=\sin |x|$ then
(a) both f and g are differentiable functions
(b) f is differentiable function but g is not
(c) g is differentiable function but f is not
(d) both f and g are not differentiable functions
48. Let $u=x+c t, v=x-c t$ and $z=\log u+\sin v^{2}$ then $\frac{\partial^{2} z}{\partial t^{2}}-c^{2} \frac{\partial^{2} z}{\partial x^{2}}$ is equal to
(a) $-c$
(b) -1
(c) $-2 c$
(d) 0
49. If α, β and γ are the roots of the equation $15 x^{3}+7 x-11=0$ then the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ is
(a) $3 / 5$
(b) $7 / 5$
(c) $9 / 5$
(d) $11 / 5$
50. Area of the region enclosed by the curves $y=x^{2}-x-2$ and $y=0$ is
(a) $7 / 2$
(b) $-7 / 2$
(c) $9 / 2$
(d) $-9 / 2$

ANSWER KEY

PART-A

$\begin{array}{rlrlrrrrr}\text { 1. } & \text { (a) } & \text { 2. } & \text { (c) } & \text { 3. } & \text { (a) } & \text { 4. } & \text { (c) } & \text { 5. }\end{array}$ (c) $)$
26. (b)
27. (b)
28. (a)
29. (d)
30. (a)
31. (d)
32. (c)
33. (b)
34. (b)
35. (c)
36. (b)
37. (c)
38. (d)
39. (b)
40. (d)
41. (a)
42. (c)
43. (a)
44. (c)
45. (d)
46. (b)
47. (b)
48. (d)
49. (d)
50. (c)

