

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2010

Time : 2 Hours

Max. Marks: 75

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) **Part-A :** Each question carry **1 Mark**. **0.33 marks** will be deducted for each wrong answer. There will be no penalty if the questions if left unanswered.
- (*iii*) **Part-B**: Each question carries **2** Marks. **0.66 marks** will be deducted for a wrong answer. There will be no penalty if the questions if left unanswered.

PART-A

The set of real numbers is denoted by \mathbb{R} , the set of complex numbers by \mathbb{C} , the set of rational numbers by \mathbb{Q} , the set of integers by \mathbb{Z} , and the set of natural numbers by \mathbb{N} .

- 1. Let $f(x) = \cos |x|$ and $g(x) = \sin |x|$ then
 - (a) both f and g are even functions
 - (b) both f and g are odd functions
 - (c) f is an even function and g is an odd function
 - (d) f is an odd function and g is an even function

2. The sequence
$$\left\{ (-1)^n \left(1 + \frac{1}{n} \right) \right\}$$
 is

- (a) bounded below but not bounded above(c) bounded
- (b) bounded above but not bounded below(d) not bounded
- If $f(x) = \begin{cases} \exp(x) 1 x, & x \neq 0 \\ 0, & x = 0, \end{cases}$ then f'(0) is

(c) 1/2 (d) none of these

- 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix with integer entries such that $b \neq 0$. If $A^2 + A + I_2 = 0$ then
 - (a) $a^2 a bc = 1$ (b) $a^2 - a - bd = 1$ (c) $a^2 + a + bc = -1$ (d) $a^2 + a - bc = -1$

(b) 1

3.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

				2			
5.	The number of points at which the function						
	$f(x) = (x -3)\sin(\pi x) + (x^2-1)(x^3-27) $ takes zero value is						
	(a) 1	(b) 2	(c) 3	(d) 4			
6.	Let $f(x) = \begin{cases} 2x, & \text{if } x \text{ is irrational,} \\ x+3, & \text{if } x \text{ is rational,} \end{cases}$ be a function defined from \mathbb{R} to \mathbb{R} . Then the discontinuities of f						
	are						
	(a) all rational numbers		(b) all irrational numbers				
	(c) $\mathbb{R} \setminus \{2\}$		(d) $\mathbb{R} \setminus \{3\}$				
7.	Consider the system of equations $AX = 0$, $BX = 0$ where A and B are $n \times n$ matrices and X is a $n \times 1$						
	matrix. Which of the following statements are true.						
	(i) $det(A) = det(B)$ implies that the two systems have the same solutions						
	(ii) The two systems have the same solutions implies $det(A) = det(B)$						
	(iii) $det(A) = 0 \neq det(B)$ implies that the two systems can have different solutions						
	(a) All are true		(b) (i) is true				
	(c) (iii) is true		(d) (i) and (ii) are	true			
8.	$\int \frac{(x+1)\exp(x)}{\cos^2(x\exp(x))} dx$ is equal to						
	(a) $-\cot(x\exp(x)) + C$		(b) $tan(x exp(x))$	+C			
	(c) $\log(\sec(x \exp(x)) + C)$		(d) $\cos(x \exp(x))$	+ <i>C</i>			
9.	If $f(x) = x^3 - 2x^2$ in (0, 5)) then the value of c to satisfy the contract of c to be a satisfied of c to be a satisfied of c to be a satisfie	atisfy the Mean Valu	e theorem is			
	(a) 2	(b) 3	(c) 4	(d) None of these			
10.	A random variable X takes	the values -1 , 0 and 1 w	ith probabilities 1/3	each. Then the mean value of X			
	is						
	(a) 0	(b) 1	(c) 0.5	(d) 0.52			
11.	Two numbers are drawn without replacement from 1, 2,, 10. The probability that their sum is an even number strictly lies in						
	(a) $(0, 1/3]$	(b) (1/3, 1/2]	(c) (1/2, 3/4]	(d) (3/4, 1]			
12.	$\lim_{x \to -1} \frac{\sqrt{2x+3}-1}{\sqrt{5+x}-2}$ is equal to)					
	(a) 4	(b) 3	(c) 2	(d) None of these			
13.	For $X, Y \subset \mathbb{R}$, define $X + Y = \{x + y \mid x \in Y, y \in Y\}$. An example where $X + Y \neq \mathbb{R}$ is						
	(a) $X = \mathbb{Q}, Y = \mathbb{R} \setminus \mathbb{Q}$		(b) $X = \mathbb{Z}, Y = [1/2, 1/2]$				
	(c) $X = (-\infty, 100], Y = \{p\}$	$p \in \mathbb{N} / p$ is prime}	(d) $X = (-\infty, 100], Y = \mathbb{Z}$				

14. Let $f:[0,5] \to \mathbb{R}$ be continuous function with a maximum at x=2 then (a) the derivative of f at 2 may not exist (b) the derivative of f at 2 must not exist and be nonzero (c) the derivative of f at 2 must not exist and be zero (d) the derivative of f at 2 can not exist 15. The perimeter of the Cardiod $r = a(1 + \cos \theta)$ is (d) none of these (a) 2*a* (b) 4*a* (c) 8*a* If $P(x) = x^3 + 7x^2 + 6x + 5$ then 16. (a) *P* has no real root (b) *P* has three real roots (c) *P* has exactly one negative real root (d) P has exactly two complex roots The number of diagonal 3×3 complex matrices A such that $A^3 = I$ is 17. (c) 9 (a) 1 (b) 3 (d) 27 The number of subgroups of order 4 in a cyclic group of order 12 is 18. (a) 0 (b) 1 (c) 2 (d) 3 Let G be an abelian group and let $f(x) = x^2$ be an automorphism of G if G is 19. (a) finite (b) finite cyclic (c) prime order (d) prime order ≥ 7 The series $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ 20. (a) converges to 1 (b) converges to 1/2(c) converges to 3/4(d) does not converge The sequence $\left\{1 + \sum_{i=1}^{n} \frac{(-1)j}{2j+1}\right\}$ is EER ENDEAVOUR 21. (b) bounded and divergent (a) unbounded and divergent (d) bounded and convergent (c) unbounded and convergent The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{1-x}{|1-x|}, & |x| < 1, \\ x^2, & |x| \ge 1 \end{cases}$ is 22. (a) continuous at all points (b) not continuous at $x = \pm 1$ (c) differentiable at all points (d) none of these Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1)$. Then an 23. eigenvalue for T is (a) 0 (b) 1 (c) 2(d) 3

24. The solutions of $x^2y'' + xy' + 4y = 0$, $x \neq 0$ are

(a) $\cos(\log x)$, and $\sin(\log x)$

(c) $\cos(\log x^2)$, and $\sin(\log x)$

(b) $\cos(\log x)$, and $\sin(\log x^2)$

(d) $\cos(2\log x)$, and $\sin(2\log x)$

25. The series
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$$

- (a) converges in (-1, 1)
- (c) converges in [-1, 1)

(b) converges in
$$[-1, 1]$$

(d) converges in (-1, 1]

PART-B

26. The integrating factor of the differential equation (y² - x²y)dx + x³dy = 0 is

(a) (xy)⁻¹
(b) (xy)⁻²
(c) xy
(d) x³y³

27. An example of an infinite group in which every element has finite order is

- (a) non-singular 2×2 matrices with integer entries
- (b) $(\mathbb{Q}/\mathbb{Z},+)$
- (c) the invertible elements in $\ensuremath{\mathbbm Z}$ under multiplication
- (d) the Quarternion group
- 28. The value of the determinant $\begin{vmatrix} 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \end{vmatrix}$ is (a) 0 (b) 1 (c) 2 (d) none

(d) none of these

4

- A natural number 'n' is said to be "petty" if all its prime divisors are $<\sqrt{n}$. A natural number is square 32. free if the square of a prime can not divide it. Then
 - (a) Every square free number is petty
 - (b) All even numbers are petty
 - (c) There exists an infinite numbers which are petty
 - (d) Square of a prime number is petty

For the sequence $\left\{\sqrt{n} + \frac{(-1)^n}{\sqrt{n}}\right\}$ of real numbers 33.

- (a) the greatest lower bound and least upper bound exist
- (b) the greatest lower bound exists but not least upper bound
- (c) the least upper bound exists but not the greatest lower bound
- (d) neither the greatest lower bound nor the least upper bound exist
- 34. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and consider the following

(i) $|f(x) - f(y)| \le 1, \forall x, y \in \mathbb{R}$ with $|x - y| \le 1$

(ii) $|f'(x)| \le 1, \forall x \in \mathbb{R}$

) _

Then we have

- (a) (i) implies (ii) but (ii) does not imply (i)
- (b) (ii) implies (i) but (i) does not imply (ii)
- (c) (i) implies (ii) and (ii) implies (i)
- (d) (i) does not imply (ii) and (ii) does not imply (i)
- 35. Let $U = \{(a,b,c,d)/a + b = c + d\}, V = \{(a,b,c,d)/a = b,c = d\}$ be subspaces of \mathbb{R}^4 . Then the dimensions U and V are
 - **AREER ENDE** (b) 2 and 3 respectively (d) 3 and 4 respectively (a) 1 and 2 respectively
 - (c) 3 and 2 respectively
- Let $f:[0,1] \to \mathbb{R}$ be continuous function and define $g:[0,1] \to \mathbb{R}$ as $g(x) = (f(x))^2$. Then 36.

(a)
$$\int_{0}^{1} f dx = 0 \Rightarrow \int_{0}^{1} g dx = 0$$

(b) $\int_{0}^{1} g dx = 0 \Rightarrow \int_{0}^{1} f dx = 0$
(c) $\int_{0}^{1} g dx = \left(\int_{0}^{1} f dx\right)^{2}$
(d) $\int_{0}^{1} f dx \le \int_{0}^{1} g dx$

Let X be a set, $\{A_{\alpha} \mid \alpha \in I\}$ be a collection of subsets of X and $f: X \to X$ be a function. Then we have 37.

$$f\left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} f(A_{\alpha}) \text{ if}$$
(a) X is finite
(b) I is finite
(c) f is one-one
(d) f is onto

The value of the integral $\int \log(\sqrt{1+x} + \sqrt{1-x}) dx$ is 38. (a) $\log \sqrt{2} - 1$ (b) $1 - \log \sqrt{2}$ (d) $\log \sqrt{2} - 1/2 + \pi/4$ (c) $\log \sqrt{2} + 1/2 + \pi/4$ The derivative of the function $y = \sin^{-1}\left(\sqrt{\frac{x-1}{x+1}}\right) + \sec^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right)$ is 39. (a) -1 (b) 0 (c) 1 (d) none of these 40. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3, x_4)) = c(x_1 - x_2, x_2 - x_3, x_3 - x_4)$. Then, which of the following statements are true? (i) dim Ker(T) = 1 if $c \neq 0$ (ii) dim Ker(T) = 4 if c = 0(iii) dim Ker(T) = 1 if T is onto (a) (i) and (ii) (b) (ii) alone (c) (ii) and (iii) (d) (i), (ii) and (iii)Let S₁ and S₂ be two series defined for $x \in (-1, 1)$ as $S_1 = \sum_{n=0}^{\infty} (\sin n)x^n$ and $S_2 = \sum_{n=0}^{\infty} (\sin n + \cos n)x^n$ 41. then (a) S_1 and S_2 are convergent (b) S_1 and S_2 are bounded but are not convergent (c) S_1 is convergent, S_1 but S_2 is only bounded (d) S_1 and S_2 are divergent If $P = \begin{bmatrix} 3 & -3 & 3 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ then P is invertible and P⁻¹ is equal to 42. (a) $(P^2 + P + I)/3$ (b) $(P^2 + P - I)/3$ (c) $(P^2 - P + I)/3$ (d) $(P^2 - P - I)/3$ Let $\{x_n\}, \{y_n\}$ be two convergent real sequences and let $z_n = \max\{x_n, y_n\}$ for each $n \in \mathbb{N}$. Then 43. (a) $\{z_n\}$ is convergent (b) $\{z_n\}$ is bounded but may not be convergent (c) $\{z_n\}$ may not be convergent but $\{z_n\}$ has a convergent sub-sequence (d) $\{z_n\}$ is convergent if and only if $\exists n_0 \in \mathbb{N} \ni x_n = y_n \forall_n \ge n_0$

44.	The solution of the differential equation $y' - y = xy^5$ is						
	(a) $y = (-x + c \exp(-4x) + c \exp(-4x))$	$(1/4)^4$	(b) $y = (-x + c \exp(x))$	$(-4x)+1/4)^{-4}$			
	(c) $y = (-x + c \exp(-4x) + x)$	$1/4)^{-1/4}$	(d) $y = (-x + c \exp(x))$	$(-4x) + 1/4)^{1/4}$			
45.	Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(n) = n, \forall n \in \mathbb{Z}$. Then						
	(a) f is identity		(b) $ f(x) \le x, \forall x \in$	$\in \mathbb{R}$			
	(c) $f(x) > 0, \forall x \in (0,\infty)$		(d) none of these				
46. Let $\{u, v, w\}$ be a linearly independent set in the vector space \mathbb{R}^3 and let $X = \text{span}\{u, v\}$							
$Y = \text{span}\{w, u + v\}$. Then the dimension of $X \cap Y$ is							
	(a) 0		(b) 1				
	(c) 2		(d) can not be found	d from the information			
47.	Let $f(x) = x x $ and $g(x) = \sin x $ then						
	(a) both f and g are differentiable functions						
	(b) f is differentiable function but g is not						
	(c) g is differentiable function	on but f is not					
	(d) both f and g are not different difference of f and g are not difference of g and g are not						
48.	Let $u = x + ct$, $v = x - ct$ a	nd $z = \log u + \sin v^2$ then	$\frac{\partial^2 z}{\partial t^2} - c^2 \frac{\partial^2 z}{\partial x^2}$ is equ	ual to			
	(a) <i>-c</i>	(b) -1	(c) –2 <i>c</i>	(d) 0			
49.	If α , β and γ are the roots of the equation $15x^3 + 7x - 11 = 0$ then the value of $\alpha^3 + \beta^3 + \gamma^3$ is						
	(a) 3/5	(b) 7/5	(c) 9/5	(d) 11/5			
50.	Area of the region enclosed by the curves $y = x^2 - x - 2$ and $y = 0$ is						
	(a) 7/2	(b) C7/2K CNUC	(c) 9/2	(d) -9/2			

7

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2010

ANSWER KEY

PART-A

1.	(a)	2.	(c)	3.	(a)	4.	(c)	5.	(c)
6.	(d)	7.	(c)	8.	(b)	9.	(b)	10.	(a)
11.	(b)	12.	(a)	13.	(a)	14.	(a)	15.	(c)
16.	(c, d)	17.	(d)	18.	(b)	19.	(d)	20.	(a)
21.	(d)	22.	(a)	23.	(c)	24.	(d)	25.	(a)
				PA	RT-B				
26.	(b)	27.	(b)	28.	(a)	29.	(d)	30.	(a)
31.	(d)	32.	(c)	33.	(b)	34.	(b)	35.	(c)
36.	(b)	37.	(c)	38.	(d)	39.	(b)	40.	(d)
41.	(a)	42.	(c)	43.	(a)	44.	(c)	45.	(d)
46.	(b)	47.	(b)	48.	(d)	49.	(d)	50.	(c)
					INCA				

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

8