-					
Name :	•••••		•••••••		
		******************	• *	•••••	2
Invigilator's Signature:					
CS/B.Tech/SEM-1/M-101/2009-10					
2009					
MATHEMATICS					
Time Allotted: 3 Hours Full Marks:					
The figures in the margin indicate full marks.					
Candidates are required to give their answers in their own words					
as far as practicable.					
			•		
GROUP - A					
(Multiple Choice Type Questions)					
1. Choose the correct alternatives for any ten of the following:					
: : :			-		$10 \times 1 = 10$
i)	Th	e value of $\lim_{n \to \infty}$	$\sqrt{1+\sqrt{2}+}$	√3 + +	$\frac{\sqrt{n}}{\ln n}$
4		$n \to \infty$		n√n] is
		_			
	a)	• 0	b)	1	
	` c)	$\frac{2}{3}$	d)	$\frac{3}{2}$.	
		•		2	
ii)	ii) Which of the following functions obeys Rolle's theorem				
in $[0, \pi]$?					
		- -		٠	
	a)	x	b)	sin x	
	c)	cos x	d)	tan x.	
11701			·		[Turn over

If C is the circle $x^2 + y^2 = 4$, then $\int x^2 dx$ is

c) 3

The equation $x^2 + y^2 = a^2$, z = 0 represents

circle a) .

cylinder b)

sphere c)

right circular cylinder. d)

v) If θ be an angle between the vectors

 $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 9\hat{j} + 6\hat{k}$, then

- a) $\theta = \cos^{-1}\left(\frac{12}{77}\right)$ b) $\theta = \sin^{-1}\left(\frac{12}{77}\right)$
- c) $\theta = \tan^{-1}\left(\frac{12}{77}\right)$ d) none of these.

If Cauchy's mean value theorem is applicable to the vi) function f(x) x and $g(x) = x^2$, then the value of C is

3/2 a)

vii) If $y^2 = 4ax$ (a is a real constant), then $\frac{d^2y}{dx^2} \cdot \frac{d^2x}{du^2}$ is

d) $-\frac{2a}{u}$.

- viii) The law of mean is given by
 - a) $\frac{f(b) + f(a)}{b a} = f'(c)$
 - b) $\frac{f(b) + f(a)}{b + a} = f'(c)$
 - c) $\frac{f(b)-f(a)}{b-a} = f'(c)$
 - d) $\frac{f(b)-f(a)}{b-a}=f(c).$
- ix) If $x = r \cos \theta$ and $y = r \sin \theta$, then the value of $\frac{\partial (r, \theta)}{\partial (x, y)}$
 - is
 - a) 0

b) 1

c) $\frac{1}{r}$

- d) -r
- x) The series $\sum_{n=1}^{\infty} \frac{2}{e^n}$ is
 - a) convergent
- b) divergent
- c) oscillatory
- d) none of these.
- xi) The function $f(x) = \begin{cases} \dot{x} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is
 - a) continuous and differentiable at x = 0
 - b) continuous but not differentiable at x = 0
 - c) neither continuous nor differentiable at x = 0
 - d) none of these.
- 701

3

xii) If
$$f(x, y) = \tan(x/y)$$
, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is

- tan(x/y)a)
- b) $\cot(x/y)$

c) 0

- d) none of these.
- The moment of inertia of a thin uniform rod of mass M and length 2a about an axis perpendicular to the rod at its centre is

c) Ma^2

- xiv) The point of intersection of the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ with the plane x + 2y - z = 5 is
 - (1, 1, 1)a)
- b) (0, 1, 3)
- c) $\left(\frac{5}{3}, 1, \frac{-4}{3}\right)$
- d) none of these.
- The reduction formula of $I_n = \int_0^\infty \cos^n x \, dx$ is
 - a) $I_n = \frac{n-1}{n} I_{n-1}$ b) $I_n = \frac{n}{n-1} I_{n-1}$
 - c) $I_n = \frac{n-1}{n} I_{n-2}$ d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. If $y = (x^2 - 1)^n$, then show that

$$(x^2-1)y_{n+2}+2xy_{n+1}-n(n+1)y_n=0.$$

3. If \vec{a} , \vec{b} , \vec{c} are three vectors, then show the

 $[\vec{a} \times \vec{B}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{d}, \vec{b}, \vec{c}]^2$, where symbols

have their usual meanings.

4. Test the convergence of the series

$$1 + \frac{2^2}{3^2}x + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2}x^2 + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2}x^3 + \dots \quad (x \neq 1).$$

5. A. B, C and D are points (α , 3, -1), (3, 5, -3), (1, 2, 3,)

and (3, 5, 7) respectively. If AB is perpendicular to CD,

then find the value of a.

- 6. If $u = \cos^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$.
- 7. Verify Rolle's theorem for the function

$$f(x) = |x|, -1 \le x \le 1.$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Examine continuity and differentiability of f(x) at x = 0, when $f(x) = x \sin\left(\frac{1}{x}\right)$; ($x \ne 0$) and f(0) = 0.
 - b) Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$

is not continuous at (0,0)

c) Find the extrema of the function

 $f(x, y) = x^3 + 3xy^2 - 3y^2 - 3x^2 + 4.$ 5 + 5 + 5

- 9. a) Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx \text{ and evaluate}$ $\int_{0}^{\pi/2} \sin^{5} x \, dx.$
 - b) If z = f(x, y) where $x = e^{u} \cos v$, $y = e^{u} \sin v$ then show that

$$y\frac{\partial z}{\partial u} + x\frac{\partial z}{\partial v} = e^{2u}\frac{\partial z}{\partial y}.$$

c) Prove that the function f(x) = |x-1|, 0 < x < 2, is continuous at x = 1, but not differentiable there. Is it continuous and derivable at x = 0? 5 + 5 + 5

- 10. a) State Leibnitz's theorem for Alternating Series and test convergence of the series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
 - b) Define absolute and conditional convergence of Series. Also show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ is absolutely convergent.
- 11. a) A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the components of velocity and acceleration at time t = 1 in the direction (1 3) + 2k.
 - b) Find the angles between the lines whose direction cosines are given by the equations l + m + n = 0 and $l^2 + m^2 n^2 = 0$.
 - c) Find the shortest distance between the lines

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}.$$

- 12. a) Find the *n*-th derivative of $y = (ax + b)^m$, m is any number.
 - b) Test the convergence of the series

$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots$$

c) Find:

div
$$\vec{F}$$
 and curl \vec{F} , where $\vec{F} = \text{grad} \left(x^3 + y^3 + z^3 - 3xyz \right)$.

$$5 + 5 + 5$$

13. a) Find the whole length of the loop of the curve

$$9y^2 = (x-2)(x-5)^2$$
.

- b) Evaluate $\int_{0}^{\frac{\pi}{2}\pi} \sin(x+y) dx dy$.
- c) State Green's Theorem.

$$6 + 6 + 3$$