1.

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 CONTROL SYSTEM SEMESTER - 4

Annual Control of the	the state of the s		
Time: 3 Hours	A State of the state of	Full M	larks: 70

Semilog Paper and Graph Paper is provided on Pages 33 and 35.

GROUP - A

	(Multiple	e Choice Type Questions)	
'Cho	ose the correct alternatives	for any <i>ten</i> of the following:	10 × 1 = 10
i)	Given that $G(s) = \frac{1}{s^2(s)}$	$\frac{k}{+2)(s+3)}$. The type & order of the	ne system is
•	a) 3 & 3	b) 2 & 4	
	c) 3 & 1	d) 3 & 0.	
11)	The root loci method of an	alysis of control system gives us	
	a) transient response	b) frequency response	
	c) steady state respons	e d) both (a) & (c).	
111)	The system represented imaginary axis of S-plane.	by its transfer function has som The system is	e poles lying on
	a) Absolute stable	b) conditionally stable	
i '	c) unstable	d) marginally stable.	
iv)	The concept of analogous	system is applicable to	
the state of the s	a) linear system only		
	b) non-linear system on	ly	
• •	c) both linear & non-lin	iear systems	
* * * * * * * * * * * * * * * * * * *	d) non-linear systems b	out can be extented to linear systems	too.

IV-244955 (5-A)

		 	Amount 4 - 4	100
-	TOOL		/EE-4 11	/(154
MB/B		 		

v)	By i	ncreasing the gain, K of the s	ystem, t	he steady state error of the s	ystem
	a)	increases	b)	decreases	
	c)	remain unaltered	d)	none of these.	
vi)	The	characteristic equation of a c	losed loc	op second order system is giv	en as
	s² +	+4s+16=0. The resonant fr	equency	in radian/sec of the system	is
	a)	2	b)	2√2	
	c)	4	d)	2√3.	
vii)	Stat	e variable approach converts	qn <i>n</i> th o	rder system into	
	а)	n-number second order diffe	erential e	equations	
	b)	two differential equations			. :
	c)	n-number 1st order differen	tial equa	itions	
	d)	a low order system.			
		• • • • • • • • • • • • • • • • • • •			
viii)	A u	nity feedback system having	an ope	on loop gain $G(s)H(s) =$	$\frac{k(1-s)}{(s+1)}$
viii)		nity feedback system having	an ope	en loop gain G(s)H(s)=	$\frac{k(1-s)}{(s+1)}$
viii)			an ope	en loop gain $G(s)H(s) = k > 1$	$\frac{k(1-s)}{(s+1)}$
viii)	beco	omes stable when			k(1-s) (s+1)
	beco a) c)	omes stable when $\mod(k) > 1$ $\mod(k) < 1$	b)	k > 1 $k < -1$.	k(1-s) (s+1)
viii) ix)	beco a) c) The	omes stable when $\mod(k) > 1$ $\mod(k) < 1$ first derivative control can be	b) d) e used to	% > 1 k < − 1.	k(1-s) (s+1)
	becca) c) The	omes stable when $\mod(k) > 1$ $\mod(k) < 1$ first derivative control can be decrease settling time	b) d) e used to	k > 1 $k < -1$. decrease damping	k(1-s) (s+1)
	becca a) c) The a)	mod (k) > 1 mod (k) < 1 first derivative control can be decrease settling time decrease velocity error	b) d) e used to b) d)	k > 1 $k < -1$. decrease damping eigenvalue analysis.	
	becca a) c) The a) c)	mod (k) > 1 mod (k) < 1 first derivative control can be decrease settling time decrease velocity error step response of a system	b) d) e used to b) d) with tra	$k > 1$ $k < -1$. decrease damping eigenvalue analysis. ansfer function $G(s) = \frac{1}{\tau s + 1}$	
ix)	becca a) c) The a) c)	mod (k) > 1 mod (k) < 1 first derivative control can be decrease settling time decrease velocity error	b) d) e used to b) d) with tra	$k > 1$ $k < -1$. decrease damping eigenvalue analysis. ansfer function $G(s) = \frac{1}{\tau s + 1}$	
ix)	becca a) c) The a) c)	mod (k) > 1 mod (k) < 1 first derivative control can be decrease settling time decrease velocity error step response of a system	b) d) e used to b) d) with tra	$k > 1$ $k < -1$. decrease damping eigenvalue analysis. ansfer function $G(s) = \frac{1}{\tau s + 1}$	

xi) The Nyquist plot shown in figure indicates

- a) marginally stable system
- b) unstable system

c) stable system

d) none of these.

xii) Transfer function is defined for

- a) linear time invariant system
- linear time variant system

- c) non-linear system
- d) none of these.

GROUP - B (Short Answer Type Questions)

b)

Write short notes on answer any three of the following.

 $3 \times 5 = 15$

 Consider the following mechanical translational system. F denotes force, x denotes displacement, M denotes Mass, B denotes friction coefficient and K denotes spring constant.

- i) Write down the differential equations governing the above system.
- ii) Draw the corresponding electrical equivalent circuit using force-voltage analogy scheme. 3 + 2

 Find out the overall transfer function C/R of the following system using the rules of Signal Flow Graph.

 A system is described by the following differential equation. Represent the system, in state space.

liowing mechanical franslational system, F denotes force,

$$\frac{\mathrm{d}^{3}x}{\mathrm{d}t^{3}} + 3\frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 4x = u_{1}(t) + 3u_{2}(t) + 4u_{3}(t).$$

5. For a system having $G(s) = \frac{25}{s(s+10)}$ & unity feedback,

Find

5

6. For a system having characteristic equation $2s^4 + 4s^2 + 1 = 0$.

Find the following:

- i) The number of roots in the left half of S plane.
- ii) The number of roots in the right half of S plane.
- iii) The number of roots on the imaginary axis.

Comment on the stability of the system. Use the Routh-Hurwitz criterion.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) A unity negative feedback system has a forward path transfer function $G(s) = \frac{ke^{-s}}{s(s^2 + 5s + 9)}$. Find the range of k for which the system is stable.
 - b) Sketch the root locus for the system, whose open loop transfer function is $G(s)H(s) = \frac{k}{s(s+5)(s+7)}$, as k is varied from zero to infinity. 6+9
- 8. a) Discuss the Nyquist stability criterion. Predict the stability of the closed-loop system using Nyquist's stability criterion of the following open-loop transfer function:

$$G(s) = \frac{(s+2)}{(s+1)(s-1)}$$

- b) i) Draw the analog circuit diagram of PID controller.
 - ii) Describe the role of integral and derivative action in a PID controller.

8 + 4 + 3

Sketch the Bode plot showing the magnitude in decibels and phase angel is degrees as a function of log frequency for the transfer function given below:

$$G(s) = \frac{10(s+1)}{s(s+2)(s+10)}$$

- a) Determine Gain Margin, Phase Margin, Gain cross-over frequency and phase 'cross-over frequency.
- b) Comment on the stability of the system.

8 + 5 + 2

- 10. a) Find the Z-transform of the following:
 - i) ak
 - ii) cos ωt.
 - b) Explain the theory & operation of a servo motor. Show how a position control scheme can be made up by using the motor.

 6 + 9
- 11. Write short notes on any three of the following:

 3×5

- a) Discrete data sptoms
- b) Absolute & relative stability
- c) Effect of poles & zeros on stability
- d) Tachometer.

END