UPSEE- 2011 MODEL TEST PAPER

PAPER 1 (For candidates appearing for B.Tech./ B.Pharm/ B.Tech[Ag]/ B.Tech [Bio. Tech.]

(PHYSICS, CHEMISTRY and MATHEMATICS)

General Instructions:

- This model paper contain three parts of Physics, Chemistry and Mathematics
- o Each Group contains *fifty questions* carrying *four marks* against each question
- There is no *negative* marking
- For familiarizing the students with multiple correct MCQ's each part has been divided in three sections (A, B & C). However, in the exam no such separate sections will be defined, the students must answer correctly all the options in order to get marks for the question.
 - Section A contains questions with only one correct answer
 - Section B contains questions with only two correct answer
 - o Section C contains questions with more than two correct answer

PART I

Physics (200 Marks)

Section-A

The following questions have only one option correct

- 1. The dimensional formula for permeability is (a) $M^{2}L^{2}Q^{-1}$ (b) ML^2Q^{-2} (c) MLQ^{-2} (d) $M^{-1}L^2Q^{-1}$
- 2. Two masses M and 2M are attached with each other by a rope passing over a frictionless and massless pulley. If the pulley is accelerated upwards with acceleration 'a', What is the value of T?

(a)
$$\frac{M(g+a)}{3}$$
 (b) $\frac{4M(g-a)}{3}$ (c) $\frac{4M(g+a)}{3}$ (d) $\frac{M(g-a)}{3}$

3. A ball is thrown upwards. It returns to ground describing a parabola. Which of the following quantities remain constant?

(a) The vertical component of momentum (c) The speed of the ball

(b) The horizontal component of velocity

- (d) The KE of the ball
- 4. A boy sitting on the top most berth in the compartment of a train which is just going to stop on a railway station, drops an apple aiming at the open hand of his brother sitting vertically below his hand at a distance of above 2 metre. The apple will fall

(a) Precisely on the hand of his brother

- (b) slightly away from hand of his brother in direction of motion of train
- (c) Slightly away from hand of his brother in direction opposite to direction of motion of the

train

(d) none of the above

5.	According to Kepler's, II la	w, the radius vector of a pla	net relative to sun	sweeps ou	it equal	areas
	in equal intervals of time.	The law is a consequence of	conservation of co	nservation	of	
	(a) linear momentum		(b) angular mom	entum	.	
c	(c) energy		(d) Newton's law	of gravita	tion	
6.	when Detergent like surf i	s added to pure water, the s	urface tension	(d) basa	mac 70	
-	(a) increases, (b)	decreases (c) is unchang	ged This is all as ha	(d) beco	mes zei	0
7.	Earth is flattened at poles	and bulged at the equator.	inis is due to			
	(d) editin revolves round th	re sun in emplical orbit	ro at the equator			
	(c) the centrifugal force is	more at the equator than at	the noles			
	(d) none of these		the poles			
8.	At 0°C a square steel bar	of 1 cm side is rigidly clamr	ed at both ends so	o that its l	ength c	annot
0.	increase. Young's modulus	of steel is 20×10^{10} Nm ⁻² ar	nd its coefficient of	linear exp	ansion i	is 11 ×
	10^{-6} °C. When the temperature	ature is raised to 10°C. the fo	prce exerted on the	clamps is		
	(a) 2000 N	(b) 2100 N	(c) 2200 N		(d) 44(67 N
9.	Two point charges Q and	d - 3Q are placed at some	distance apart. If t	he electri	c field	at the
	location of Q is E, then at t	he location of $-3Q$, it is				
	(a) <i>—E</i>	(b) <i>E</i> /3	(c) –3 <i>E</i>		(d) <i>–E</i> /	/3
10	Two dielectrics of equal s	ize and of constant 2 and 3	respectively fill up	space bety	ween th	ne two
	plates of a condenser. The	ratio of capacities in two po	ssible arrangement	s will be		
	(a) 24/25	(b) 25/24	(c) 4/5		(d) 5/4	1
11	What force must be exer	ted to immerse a wooden o	cube of side 4 cm	and specif	fic gravi	ity 0.6
	completely in water				()) = (. .
40	(a) 38.4 gwt	(b) 64 gwt	(c) 25.6 gwt		(d) 54.	.4 gwt
12.	I ne coefficient of superfici	al expansion of a solid is β if	s coefficient of cub	ical expan	SION IS	
10	(a) $(2/3)p$	(U) (3/2) p d with 10c of 0 of 27% (U)	(C) Zp		de (D)	مطنعم
13	22g OI CO ₂ at 27 C is mixed	$1 \text{ with 16g of } \mathbf{O}_2 \text{ at 37 C. If } \mathbf{O}_2$	oth gases are consi	dered as lo	lear, the	en the
	(a) 32°C	(h) 27°C	(c) 37°C		(d) 30	5°C
14	If the temperature of the	sun is doubled the rate of e	energy received on	earth will	be incr	eased
	by a factor of				Se mei	cuscu
	(a) 2	(b) 4	(c) 8		(d) 16	
15	The insulation property o	f air breaks down at inten	sity of electric field	d of 3MV	/m max	kimum
	charge that can be given to	o a sphere of diameter 5 m is	5			
	(a) 2×10^{-2} C (b) 2×10^{-2}	D^{-3} (c) 2 × 10 ⁻⁴ (d) 2 × 10 ⁻⁴	10 ^{−5} C			
16	The correct relation betwe	en the specific resistance S	and resistance per u	unit length	ו P is	
	(a) S = AP	(b) S = A/P	(c) S = P/A		(d) S =	Р
17	N identical drops each cha	arged to energy <i>E</i> form a big	g drop. The energy	of the big	g drop v	will be
	(a) <i>NE</i>	(b) <i>E/N</i>	(c) <i>N</i> ^{5/3} <i>E</i>		(d) <i>N²L</i>	Ē
18	A cell of emf 1.5 V having	a finite internal resistance is	connected to a loa	d resistan	ce of 2	Ω . For
	maximum power transfer	the internal resistance of the	e cell in ohms shoul	d be		
	(a) 4 (b) 0.5 (c) 2	(d) none of these				
19.	A long solenoid has a radi	us a and number of turns p	er unit length is <i>n</i> .	If it carrie	es a cur	rent i,
	then magnetic field on its a	axis is directly proportional t	(0)		$(d) p^{2}$	
20	$(a) uni \qquad (b) n i \qquad (c) (n) / a \qquad (a) n i$					
20.	(a) current	(h) resistance	(c) self-induction		(d)	eddy
	current losses				(0)	cuuy

- 21. The ratio of specific charge *elm* of a proton to that of an α -particle is(a) 1:4(b) 1:2(c) 1:1/4(d) 1/2
- 22. When a point source of light is 1 m away from a photoelectric cell, the photoelectric current is found to be 1 mA If the same source be placed at 3 m from the same photoelectric cell, the photoelectric current will be
 - (a) 1/9 mA (b) 1/3 mA (c) 3 mA (d) 9 mA
- 23. A sample of a radioactive substance contains 2,828 atoms. If its half-life is two days, how many atoms will be left intact in the sample after one day?
 (a) 2,000
 (b) 1,000
 (c) 1,414
 (d) 707
- 24. A wave is reflected from a free boundary. The change of phase on reflection will be (a) zero (b) $\pi/4$ (c) $\pi/2$ (d) π
- 25. A short linear object of length b lies along the axis of a concave mirror of focal length f at a distance u from the pole of the mirror. The size of the image is approximately equal to

(a)
$$b\left(\frac{u-f}{f}\right)^{1/2}$$
 (b) $b\left(\frac{u-f}{f}\right)$ (c) $b\left(\frac{f}{u-f}\right)^{1/2}$ (d) $b\left(\frac{f}{u-f}\right)^2$

Section-B

Instructions: The following questions have two correct answers and you must tick both the correct choices for getting any marks for that question.

A particle moves with initial velocity v_0 and retardation αv where v is the velocity at any time t. (a) The particle will cover a total distance v_0/α

- (b) The particle will come to rest after time after time t = 1/ α
- (c) The particle will move for a very long time
- (d) The velocity of particle will become $v_0/2$ after time $1/\alpha$
- 26. The two blocks A and B of equal masses are initially in contact when released from rest on the inclined plane. The coefficients of friction between the inclined plane and A and B are μ_1 and μ_2 respectively

(a) If $\mu_1 > \mu_2$ the blocks will always remain in contact

(b) If $\mu_1 < \mu_2\,$ the blocks will slide down with different accelerations

(c) If $\mu_1 > \mu_2$, the blocks will have a common acceleration of $\frac{1}{2}(\mu_1 + \mu_2)g\sin\theta$

(d) If $\mu_1 < \mu_2$ the blocks will have a common acceleration $\frac{\mu_1 \mu_2 g}{\mu_1 + \mu_2} \sin \theta$

- 27. A simple pendulum rotates in a horizontal plane with an angular velocity of ω about a fixed point P in gravity free space. There is a negative charge at P. The bob gradually emits photoelectrons (ignore the change in energy and momentum of photons and electrons). The total force acting on the bob is T.
 - (a) T will decrease and $\boldsymbol{\omega}$ will increase
 - (b) T will decrease and $\boldsymbol{\omega}$ will remain constant
 - (c) T and $\boldsymbol{\omega}$ will remain unchanged
 - (d) The elastic strain in the string will decrease

- 28. A ring (R) disc (D) and solid sphere (S) and hollow sphere (H) are having same mass but different radii, all start together from rest at the top of an inclined plane and roll down without slipping.
 - (a) All of them will reach the bottom of incline together
 - (b) The body with maximum radius will reach the bottom first.
 - (c) They will reach the bottom in the order of S,D,H,R
 - (d) All of them will have same kinetic energy at the bottom
- 29. A coin is placed on horizontal platform, which undergoes vertical simple harmonic motion of angular velocity ω . The amplitude of oscillation is gradually increased. The coin will leave contact for the first time
 - (a) At the highest position of platform

(c) for an amplitude of g/
$$\omega^2$$

(b) At the mean position of the platform (d) for an amplitude of $\frac{\sqrt{g}}{\omega}$

- 30. A spring balance reads W_1 when a ball is suspended from it. A weighing machine reads W_2 when a tank of liquid is kept on it. When the ball is immersed in liquid, the spring balance reads W_3 and weighing machine reads W_4
- (a) $W_1 > W_3$ (b) $W_1 < W_3$ (c) $W_2 < W_4$ (d) $W_2 > W_4$ 31. A double star system rotating about their centre of mass only under their mutual gravitational attraction. Let the stars have masses m and 2m and let their separation be L. Their time period of rotation about their centre of masses will be proportional to (a) $L^{3/2}$ (b) L (c) $m^{1/2}$ (d) $m^{-1/2}$
- (a) L^{3/2} (b) L (c) m^{1/2} 32. A spherical body of radius r radiated power P, and its rate of cooling is R

(a)
$$P \propto r$$
 (b) $P \propto r^2$ (c) $R \propto r^2$ (d) $R \propto \frac{1}{r}$

33. The stationary waves set up on a string have the equation

 $y = (2mm)sin[(6.28m^{-1})x]cos(\omega t)$. This stationary wave is created by two identical waves, of amplitude A each moving in opposite directions along the string

- (a) A = 2 mm
- (b) A = 1 mm
- (c) The smallest length of string is 50 cm
- (d) The smallest length of string is 2 m
- 34. A transverse sinusoidal wave of amplitude A, wavelength λ and frequency f is travelling on a stretched string. The maximum speed of any point on string is v/10 where v is the speed of propagation of the wave. If A = 10⁻³ m and v = 10 m/s then λ and f are given as

(a)
$$\lambda = 2\pi \times 10^{-2}$$
 m

- (b) $\lambda = 10^{-3}$ m
- (c) $f = 10^3/(2\pi) Hz$
- (d) $f = 10^3 Hz$
- 35. A dipole of moment ${\bm p}$ is placed in uniform electric field ${\bm E}.$ The force on the dipole is ${\bm F}$ and the torque is τ
- (a) $|\mathbf{F}| = 0$ (b) $\mathbf{F} = |\mathbf{p}|\mathbf{E}$ (c) $|\tau| = \mathbf{p}.\mathbf{E}$ (d) $\tau = \mathbf{p} \times \mathbf{E}$ 36. In a parallel plate capacitor of plate area A, plate separation d and charge Q, the force of attraction between the plates is F. Then F is proportional to (a) Q^2 (b) A^{-1} (c) d (d) d^{-1}
- 37. In the figure the capacitor C is initially without charge. X is now joined to Y for a long time, during which heat H₁ is produced in the resistance R. X is now joined to Z for a long time, during

which H₂ heat is produced in R

- (a) $H_1 = H_2$
- (b) $H_1 = \frac{1}{2}H_2$
- (c) $H_1 = 2H_2$

(d) The maximum energy stored in C at any time is H_2

38. In the circuit shown, the cell has emf of 10 V and internal resistance of 1 Ω .

- (a) current through 3 Ω resistor is 1 A.
- (b) the current through 3 Ω resistor is 0.5 A
- (c) The current through 4 Ω is 0.5 A
- (d) The current though the 4 Ω resistor is 0.25 A
- 39. A flat circular coil carrying a current, has a magnetic moment μ .
 - (a) μ has only magnitude and no direction
 - (b) The direction of $\boldsymbol{\mu}$ is along the normal to the plane of coil
 - (c) The direction of $\boldsymbol{\mu}$ depends on the direction of current flow
 - (d) The direction of $\boldsymbol{\mu}$ does not change if the current in coil is reversed
- 40. A charged particle is fired at an angle θ to a uniform magnetic field directed along the x axis. During this motion along a helical path, the particle will
 - (a) never move parallel to x axis
 - (b) move parallel to x axis during every rotation for all values of θ
 - (c) move parallel to the x axis at least once during every rotation if θ = 45°
 - (d) never move perpendicular to x axis
- 41. Which of the following assertions are correct?
 - (a) A neutron can decay to a proton only inside a nucleus
 - (b) A proton can change to a neutron only inside a nucleus
 - (c) An isolated neutron can change into a proton
 - (d) An isolated proton can change into a neutron
- 42. A thin symmetric double convex lens of power P is cut into three parts, A B and C as shown, then

power of

(b) A is 2P

(d) B is P/4

- 43. In a Young's double slit experiment, let A and B be two slits. A thin film of thickness t and refractive index μ is placed in front of the slit A. Let β be the fringe width. The central maximum will shift
- a) towards A (b) towards B (c) by $t(\mu 1)\frac{\beta}{\lambda}$ (d) by $t\mu\frac{\beta}{\lambda}$ 44. A ray of light travelling in transparent medium falls on a surface separating the medium from air, at an angle of incidence of 45°. The ray undergoes total internal reflection. If n is the refractive index of medium, select the possible values of n from the following (a) 1.3 (b) 1.4 (c) 1.5 (d) 1.6

Section-C

Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

45. The wires A and B shown in the figure are made of same material, and have radii R_A and R_B respectively. The block between them has mass m. When the force F is mg/3, one of the wires

breaks

- (a) A wire break before B if $R_A = R_B$
- (b) A wire break before B if $R_A < 2R_B$.
- (c) Either A or B may break if $R_A = 2R_B$
- (d) The lengths of A and B must be known to predict which wire will break
- 46. A ball of mass m is attached to the lower end of light vertical spring of force constant k. the upper end of the spring is fixed. A ball is released from the rest with the spring in its normal (unstretched) length and comes to rest again after descending through a distance x
 - (a) x = mg/k
 - (b) x = 2mg/k
 - (c) The ball will have no acceleration at a position where it has descended through x/2
 - (d) The ball will have an upward acceleration equal to g at its lowermost position
- 47. A parallel plate air capacitor of capacitance C₀ is connected to a cell of emf E and then after charging capacitor is disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it
 - (a) The potential difference between the plates decreases K times
 - (b) The energy stored in capacitor decreases K times
 - (c) The change in energy is $\frac{1}{2}C_0E^2(K-1)$

(d) the change in energy is $\frac{1}{2}C_0E^2\!\!\left(1\!-\!\frac{1}{K}\right)$

- 48. When a nucleus with atomic number Z and mass number A undergoes a radioactive decay process
 - (a) Both Z and A decrease, if the process is α decay
 - (b) Z will decrease but A will not change if the process is β^+ decay
 - (c) Z will increase and A will remain unchanged if the process is β^- decay
 - (d) Z will increase and A will remain unchanged if the process is γ decay
- 49. If a converging beam of light is incident on a concave mirror, the reflected light
 - (a) may form a real image
 - (b) must form a real image
 - (c) may form a virtual image
 - (d) may be a parallel beam

PART-II CHEMISTRY (200 Marks)

SECTION -A

The following questions have only one correct option, tick the correct answer.

1.	 Vant Hoff factor for 0.1M Ba(NO₃)₂ is 2.74. Degree of dissociation is: 			
	a. 91.3%	b. 87%	c. 100%	d. 74
2.	In Arrhenius plot, intere	cept is equal to:		
	a. –E _a /R	b. In A	c. ln K	d. log a
3.	Minimum concentratio a. emulsification value c. flocculation number	n of an electrolyte which is a b. saponification value d. gold number	able to cause coagulation of a	a sol is:
4.	Number of lone pairs o	f electrons on Xe in XeF ₂ , Xe	F_4 , Xe F_6 are:	
	a. 3,2,1	b. 4 , 3 , 2	c. 2 , 3 ,1	d.3,2,0
5.	IF ₅ shows which type of	hybridization:		
	a. sp ³ d ²	b. sp ³ d ³	c. sp ² d	d. d ² sp ³
6.	Which halide is most ac	cidic:		
	a. PCl ₃	b. SbCl ₃	c. BiCl ₃	$d.CCl_4$
7.	Which compound is for	med when excess KCN is add	ded to aq.CuSO ₄ :	
	a. Cu(CN) ₂	b. K ₂ [Cu(CN) ₆]	c. K[Cu(CN) ₂]	
	d. K ₃ [Cu(CN) ₄]			
8.	which of the following i	is an outer orbital complex:		
	a. [Ni(NH ₃) ₆] ²⁺	b. [Co(NH ₃) ₆] ³⁺	c. [Fe(H ₂ O) ₆] ²⁺	
	d. [Co(CN) ₆] ^{4–}			
9.	According to crystal field	ld split theory the fourth ele	ectron coming into the d orbi	tal goes to e _g
	a. Δ _o > p	b. Δ _o < p	c. Δ _o = p	d. $\Delta_0 = 0$
10.	$[CoF_6]^{3-}$ shows which type of hybridization:			
	a. sp ³ d ²	b. sp ³ d ³	c. sp ² d	d. d ² sp ³

11.	which of the following exhibit stereoisome	erism:			
	a. 2-methyl butane b. 3-methyl butyne	2	c. 3–methyl butano	ic acid	
	d. 2–methyl butanoic acid				
12.	Identify the state function:				
	a.q b. q-w		c. q/w	d. q + w	
13.	An ideal gas expands in volume from 10^{-3}	³ m ³ to 10	0 ⁻² m ³ at 300K agains	t a constant pressure	
	of 10^{5} Nm ⁻² . What is the work done:				
	a. –900 kJ b. –900 kJ		c. 270 kJ	d. 900 kJ	
14.	An organic compound C_3H_6O did not show	w silver r	nirror test but show	s aldol condensation.	
	The compound is:				
	a. $CH_2=CH-CH_2-OH$ b. CH_3-CH_2-CHO	c. CH	₃ -CO-CH ₃ d. CH ₂ :	=CH–OCH ₃	
15.	In which mode of expression, the concent	ration rer	mains independent o	f temperature:	
	a. Molarity b. Normality		c. Formality	d. Molality	
16.	Which of the following has lowest freezing	g point:			
	a. 0.1 molal solution of urea		b. 0.1 molal solutio	n of sucrose	
	c. 0.1 molal solution of acetic acid		d. 0.1 molal solutio	n of calcium chloride	
17.	A crossed aldol condensation between	en arom	natic aldehydes/ket	ones with aliphatic	
	aldehydes/ketones is:				
	a. Williamson's synthesis		b. Sandmeyer's rea	ction	
	c. Claisen-Schmidt condensation		d. Reimer–Tiemann	reaction	
18.	Which of the amines will show positive ca	rbvlamine	es reaction:		
	a. Aniline b. N–methylanilin	e	c. N.N dimethylanil	ine	
	d. Dimethylamine	-			
19.	Diazotization is a process in which:				
	a. Phenol can be differentiated from the o	other grou	ips		
	b. Benzene diazonium chloride is formed	0			
	c. Aniline can be differentiated from other groups				
	d. None	0 1			
20.	The reddish brown coloured gas formed w	vhen nitri	c acid is oxidized by a	air is:	
	a. N_2O_5 b. N_2O_4		c. NO ₂	d. N ₂ O ₃	
21.	Carboxylic acids heated in presence of pho	osphorus	pentaoxide yields:		
	a. Acid amides b. Acid anhydride	s	c. Acid chlorides	d. Aldehydes	
22.	Which of the following undergo Cannizard	o's reactio	on:		
	a. Ethanol b. Formaldehyde		c. Acetaldehyde		
	d. None of these				
23.	In Schotten Baumann reaction benzoyl ch	loride rea	cts with:		
	a. Benzoic acid b. Benzaldehyde		c. Phenol	d. Aniline	
24.	Kolbe's electrolysis of potassium Ethanoat	te yields:			
	a. Ethene b. Methane		c. Ethane	d. Propane	
25.	IUPAC name of [Pt(NH ₃) ₃ Br(NO ₂)Cl]Cl is				
	a. Triamminechlorobromonitroplatinum (I	V) chlorid	de		
	b. Triamminechlorobromonitrochloroplati	inum (IV)	chloride		
	c. Triamminebromochloronitroplatinum (I	V) chloric	le		
	d. Triamminenitrochlorobromoplatinum(I	V) chlorid	e		

26. H_2O_2 is stored in dark coloured bottles as:

a. Decomposes to form water

c. Decomposes to form oxygen

oxygen

- b. Decomposes to form water & oxygen
- d. Decomposes to form hydrogen &

SECTION-B

Instructions: The following questions have two correct answers and you must tick both the correct choices for getting any marks for that question.

27. Freundlich adsorption	isotherm is numerically e	qual to:	
a. x/m=Kp ^{1/n}		b. x/m=log K+ n log p	
c. log x/m= log K + n lo	og p	d. log x/m = log K + 1/r	n log p
28. Which of the following	g show free movement are	ound C–C bond:	
a. Ethane	b. ethene	c. propene	d. propane
29. For an adiabatic expan	nsion of ideal gas:		
a. PV ^Y = constant	b. TV ^{Y-1} = constant	c. TP ^Y = constant	
d. PV^{Y-1} = constant			
30. Which behaves as bot	h nucleophile & electroph	ile:	
a. CH₃OH	b. CH₃Cl	c. CH₃CN	d. HCHO
31. Grignard's reagent de	rived from which of the	following compounds on tr	eating with water
gives the same alkane	:		
a. $CH_3CH_2CH_2CH_2CI$	$CH_3CH_2CH_2CICH_3 \qquad C$. $(CH_3)_3CCI$ d. $(CH_3)_2CH_2C$	CH₂CI
32. An unsaturated hydro	ocarbon on ozonolysis gi	ves 1 mole of methanal ,	ethanal & 2 keto
propanal:			
a. CH ₂ =CHCH=CHCH ₃		b.CH ₃ CH=CHCH=CHCH	3
c. CH ₂ =C(CH ₃)CH=CHC	H ₃	d. CH ₂ =CHC(CH ₃)=CHC	H ₃
33. Which of the following	g species have electron re	leasing effect	
а. —СНО	b. $-CH_2CH_3$	с. —СН ₃	d. $-C_6H_5$
34. Which of the followin	g species are electrophilic		
a. Cl⁺	b. AICl ₃	c. NH ₃	d. CH ₃ OCH ₃
35. Which of the followin	g pair of compounds are h	omologous	
a. 1–propanol and 2–	propanol	b. 1–propanol and 1–b	outanol
c. 2–propanol and 2–r	nethyl 2–propanol	d. ethanol and propan	ol
36. Cyclohexane exists in	which form:-		
a. boat	b. chair	c. planar	d.crown
37. Which of the followin	g is/are correct about Indu	ictive effect	
a. It is a temporary eff	ect		
b. it is an electron dis	placement effect		
c. It is always electron	releasing in nature		
d. It depends on the d	istance from the l effect g	roup	
38. Which of the following	g is/are correct		
a. Resonance is deloc	alization of sigma electror	15	
b. Hyperconjugation	s delocalization of pi elect	rons	

	 c. Hyperconjugation is delocalization of sigma electrons 				
	d. Resonance is delocalization of pi electrons				
39.	Alcohols may act as:				
	a. Oxidizing agent	b. Reducing agent	c. Lewis base	d. Bronsted acid	
40.	Grignard's reagent give	s secondary alcohols with:			
	a. Ethanal	b. Methanal	c. Propanone	d. Propanal	
41.	Which of the following	can be distinguished using c	oupling reaction:		
	a. Phenol		b. Benzene dizonium	chloride	
	c. Aniline		d. Toluene		
42.	Grignard's reagent is used to prepare which of the following:				
	a. Secondary alcohols		b. Nitro compounds		
	c. Carboxylic acids		d. Amine		
43.	tert-butyl methyl ether	on heating with HI gives:			
	a. tert-butyl iodide	b. Methyl iodide	c. Methanol	d. Isobutylene	
44.	Identify Lewis acids:				
	a. HCl	b. H⁺	c. H ₂ SO ₄	d. BCl ₃	
45.	5. For a rate expression Rate = $k[A] [B]^2$:				
	a. reaction is first order w.r.t. B b. reaction is second order w.r.t. A				
	c. reaction is first order w.r.t . A d. reaction is second order w.r.t. B			order w.r.t. B	

SECTION-C

Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

46	. White P ₄ has:					
	a. 6 P–P single bonds	b. 4 P–P single bonds	c. 4 lone pairs	d. PPP angle of 60		
47	. Which of the following	g represents a spontaneous p	process:			
	a. ΔH = +, ΔS = +	b. ΔH = –, ΔS = –	c. $\Delta H = -$, $\Delta S = +$	d. $\Delta H = +, \Delta S = -$		
48	. For the reaction PCl_{5} \bigstar	\rightarrow PCl ₃ + Cl ₂ , rate of forward	rd reaction increases b	y:		
	a. putting inert gas at o	constant V	b. Removing Cl ₂			
	c. putting inert gas at constant P d. putting PCI ₅ gas at constant V					
49	49. Which compounds show only sp ³ hybridized carbon:					
	a. cycloalkanes	b. straight chain alkanes	c. branched chain all	kanes d. benzene		
50	50. Which of the following species are planar:					
	a. Tertiary butyl free ra	adical	b. Tertiary butyl cark	ocation		
	c. Tertiary butyl carboa	anion	d. Alkyl carboanion			

PART –III –Mathematics (200 Marks)

Section A

The following questions have only one correct option, tick the correct answer.

1. If a,b,c are in GP, then the equation $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ are in a) AP b) GP c) HP d) None 2. A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio is d) 2 a) 5 b) 4 c) 3 3. The coefficient of x^{p} and x^{q} in the expansion of $(1 + x)^{p+q}$ are b) equal with opposite sign a) equal c) reciprocal of each other d) None 4. If $x \in R$ and $\alpha = \frac{x^2}{(1+x^4)}$, then a) $0 \le \alpha \le 2$ c) $0 \le \alpha \le \frac{1}{4}$ d) $0 \le \alpha \le \frac{1}{2}$ b) $0 \le \alpha \le 1$ 5.A bag contains 100 tickets numbered 1 to 100, two tickets are drawn. If it is given that maximum number on chosen tickets is not more that 10, The probability that minimum number is 5 is a) 1/3 c) 1/1330 d) 13/15 6. If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}; B = \begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & -1 \end{bmatrix}$ then a) AB = BA c) AB = 3BAd) None b) AB = 2BA7. If the difference between mean and mode is 63, the difference between mean and median is a) 189 b) 21 c) 31.5 d) 48.5 8. In a group of 52 students, 16 drink tea but not coffee and 33 drink tea. Then the number of persons who take coffee but not tea is a) 19 c) data insufficient d) None b) 36 9. Value of $\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}$ is a) 1 b) 0 c) -1 d) 1/2 10. If $y = tan^{-1}\frac{1-x^2}{1+x^2}$, then $\frac{dy}{dx}$ is a) $1/(1 + x^4)$ b) $-2x/(1 + x^4)$ `c) $-1/(1 + x^4)$ 11. Let $y = \tan^{-1}\left(\frac{4x}{1+5x^2}\right) + \tan^{-1}\left(\frac{2+3x}{3-2x}\right)$; then $\frac{dy}{dx}$ is d) None b) $\frac{1}{1+25x^2}$ a) $\frac{5}{1+25x^2}$ c) $\frac{5}{\sqrt{1+25x^2}}$ d) $\frac{1}{\sqrt{1+25x^2}}$ 12. The line bx + ay = ab touches the curve $y = be^{-x/a}$ at point b) (–a, b/a) c) (a, a/b) d) None a) (a, b/a) 13. If $f(x) = kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then value of k is a) k < 3 b) k > 3 c) k ≤ 3 d) None 14. $\int_{-1}^{1} |1 - x| dx$ equals b) 0 c) 2 d) 4 15. $\int_{-\pi}^{\pi} (1-x^2) \sin x \cdot \cos^2 x \cdot dx$

	a) $\pi - \frac{\pi^3}{3}$	b) 0	c) $2\pi - \pi^3$	d) $\frac{7}{2} - 2\pi^3$
16.	Area enclosed between c	urves $y^2 = 4ax$ and $x^2 = 4ay$	is	
	a) 8a ⁻ /3	b) 16a ⁻ /3	c) 4a ⁻ /3	d) None
17.	If $z + \sqrt{2} z+1 + i = 0$ th	en value of z is		
	a) 2 + i	b) 2 – i	c) –2 – i	d) – 2 + i
18.	If angle A in triangle ABC of the equation	is given by equation $3\cos x$	A + 2 = 0, then sin A and co	s A are roots
	a) $6x^2 + \sqrt{5}x - 5 = 0$	b) $6x^2 - 5\sqrt{5}x - 5 = 0$	c) $6x^2 - 5\sqrt{5}x + 5 = 0$	d)
	$6x^2 + 5\sqrt{5}x - 5 = 0$			
19.	If A = tan ^{-1} x, then value of	of sin 2 A is		
	a) $\frac{2x}{1-x^2}$	b) $\frac{2x}{\sqrt{1-x^2}}$	c) $\frac{2x}{1+x^2}$	d) None
20.	If a = 2,b = 3,c = 5 in $\triangle ABC$	C then the value of angle C	is equal to	
	a) π/6	b) π/3	c) π/2	d) None
21.	The equation, $x^2 - 3xy + 3x$	$\lambda y^2 + 3x - 5y + 2 = 0$ rep	resents pair of lines, if θ is ar	ngle between
	them value of $cosec^2 \theta$ is	•		-
	a) 3	b) 9	c) 10	d) 100
22.	The line y = mx + c is tang	ent to y ² = 4x if m is equal to)	
	a) 1	b) 2	c) 3	d) 4
23.	The area of parallelogram are	n whose diagonal coincide v	with following vectors is $9\sqrt{3}$, the vectors
	a) 3i + 2j – k, 3i – j + 4k	b) $\frac{3}{2}i - \frac{1}{2}j - k$;2i - 6j + 8k		
	c) 3i + j – 2k; i + 3j + 4k	d) None		
24.	If a , b and c be non zero v	vectors such that a + b + c = (), then a.b + b.c + c.a is	
	a) 0	b) < 0	c) > 0	d) 3
25.	Bullet of 125 gm strikes a and is free to move, then	target with 400 m/s and is evelocity of target will be	embedded in it. If the target	weighs 10 kg
	a) 400/81 m/s	b) 400 m/s	c) 300 m/s	d) None

SECTION-B

Instructions: The following questions have two correct answers and you must tick both the correct choices for getting any marks for that question.

26.	26. One root of the equation $8x^2 - 6x + k = 0$ is the square of the other if k is				
	a) 1	b) 0	c) 2	d) –27	
27.	The points (2a,4a), (2a,6a) and $[(2+\sqrt{3})a,5a]$ (a > 0)	are the vertices of		
	a) an acute angled triangle	le	b) an equilateral triang	le	
	c) an isosceles triangle		d) a right angled triang	le	
28.	The equation of a straigh	nt line passing through the p	oint (4,5) and equally in	clined to the lines	
	3x - 4y = 7 and $5y - 12x =$	= 6 is			
	a) 9x – 7y = 1	b) 9x + 7y = 71	c) 7x + 9y = 73	d) 7x – 9y = 17	
29.	The coordinates of A,B,C	and D are (6,3),(-3,5), (4, -	-2) and (x,3x) respectivel	y. If the area of Δ	
	ABC = 2Δ DBC then value of x is				
	a) – 3/8	b) -3	c) 11/8	d) 4	

- 30. Coordinates of the point on the curve $2x^2 + 3xy + 4y^2 = 9$, tangent at which is parallel to chord joining points (12,2) and (1,9) are a) (1,1) b) (1,-1) c) (-1,1) d) (-1,-1)
- 31. Determinant of a skew symmetric matrix of order n is

 a) zero if n is odd
 b) a non zero perfect square if n is odd
 c) zero if n is even
 d) a non zero perfect square if n is even

 32. The straight line y = 3x 1 touches the curve y = x⁴ 2x² + 3x at
- a) (1,2) b) (-1,4) c) (0,0) d) None of these

33. Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
. Then
a) A is skew symmetric matrix b) A + A' = 0
c) A is invertible d) None of these
34. The number of diagonals of n sided polygon is
a) $\frac{1}{2}n(n-3)$ b) $\frac{1}{2}(n-2)$ c) ${}^{n}C_{2}-n$ d) None of these
35. Let $A = \{p,q,r\}$ then
a) $r \in A$ b) $r \subseteq A$ c) $\{r\} \in A$ d) $\{r\} \subseteq A$
36. Let $A = \{a,b,c,d\}$ and $B = \{c,d,e,f\}$ then
a) $A - B = \{e,f\}$ b) $A \cap B' = \{a,b\}$ c) $A - (A \cup B) = \{a,b\}$
d) $(A \cup B) - B = \{a,b\}$
37. If $p = {}^{n}C_{2}$ then ${}^{n}C_{2}$ is
a) $3.^{n+1}C_{4}$ b) $\frac{1}{2}{}^{n+1}C_{2}{}^{n-1}C_{2}$ c) ${}^{n+1}C_{2}{}^{n-1}C_{2}$ d) None of these
38. $\int \sin^{5} x.dx$ is
a) $-\frac{1}{15}[15\cos x - 10\cos^{5} x + 3\cos^{5} x] + C$ b) $\frac{1}{15}[15\cos x - 10\cos^{5} x + 3\cos^{5} x] + C$
c) $-\frac{1}{240}[3\cos 5x - 25\cos 3x + 150\cos x] + C$ d) None of these
39. $\int \frac{1}{\sqrt{\sin^{3} x}\sin(x+\theta)} dx}{a) - 2\csc \theta \sqrt{\cos \theta + \cot x.\sin \theta} + C$
c) $-2\csc \theta \sqrt{(\sin (x + \theta)/\sin x)} + C$ d) $-2\csc \theta \sqrt{(\cos (x - \theta)/\sin x)} + C$
40. For $1 \le r \le n$ the value of ${}^{n}C_{r} + {}^{n-2}C_{r} + ... + {}^{r}C_{r}$ is
a) ${}^{n}C_{r+1}$ b) ${}^{n+1}C_{r}$ c) ${}^{n+1}C_{r+1}$ d) None of these
41. If R and R' be two equivalence relations. Then

a) $R \cap R'$ is also an equivalence relationb) $R \cup R'$ is equivalencec) $R^{-1} \cap R'^{-1}$ is equivalenced) None of these

- 42. The value of x for which the tangent to the curve $y = (x + 2)^2$ passes through the origin is a) 1 b) 2 c) -2 d) 3
- 43. The equation of tangent to circle $x^2 + y^2 = 25$ and passing through (-2,11) is a) 4x + 3y = 25 b) 3x + 4y = 38 c) 7x + 24y = 230 d) 24x - 7y + 125=0
- 44. Let $\mathbf{p} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{q} = 5\mathbf{i}$, $\mathbf{r} = \frac{1}{4}$ ($\mathbf{p} + \mathbf{q}$) and $2\mathbf{s} = \mathbf{p} \mathbf{q}$, then a) $|\mathbf{p} + \mathbf{r}| = |\mathbf{q} + \mathbf{s}|$ b) $|\mathbf{p} + \lambda \mathbf{s}| = |\mathbf{r} - \lambda \mathbf{s}|$ c) $|\mathbf{p} + \mathbf{q}| = |\mathbf{p} - \mathbf{q}|$ d) \mathbf{r} is perpendicular to \mathbf{s} .
- 45. The vector **a,b**, and **c** are of same length and taken pair wise, they form equal angles. If $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{i} + \mathbf{k}$ then the coordinates of **c** are a) (1,0,1) b) (1,2,3) c) (-1,1,2) d) (-1/3, 4/3, -1/3)

SECTION-C

Instructions: The following questions have more than two option correct and you must choose all the correct responses for getting marks for that question.

- 46. In the parabola $y^2 2y + 8x 23 = 0$
 - a) focus is (1,1)
 - b) directrix is x = 5
 - c) length of double ordinate at a distance 3 units from the vertex is $4\sqrt{6}$
 - d) length of latus rectum is 8
- 47. Differential coefficient of $log_{10} x$ wrt x^2 is

a)
$$\frac{1}{2x^2}$$
 b) $\frac{\log_{10} e}{2x^2}$ c) $\frac{1}{2x^2 \log_e 10}$ d) $\frac{\log_{10} \sqrt{e}}{x^2}$

48. If $(1+x)^{1/x} = a_0 + a_1x + a_2x^2 + a_3x^3 + ...$ then

a)
$$a_0 = e$$
 b) $a_1 = e/x$ c) $a_3 = 11e/24$ d) None of these

- 49. $\int \cos(\log x) dx$
 - a) $\frac{x}{\sqrt{2}}\cos\left(\log x \frac{\pi}{4}\right)$ b) $\frac{x}{2}(\cos\log x + \sin\log x)$ c) $\frac{x}{\sqrt{2}}\sin(\log x + \pi/4)$ d) $\frac{x}{2}(\cos\log x - \sin\log x)$
- 50. A particle is projected with a velocity u, at an angle α from the foot of an inclined plane whose inclination to the horizontal is β . It strikes the plane at right angles if
 - a) 2 tan $(\alpha \beta) = \cot \beta$ b) cot $(\alpha \beta) = 2 \tan \beta$ c) tan $\alpha = \cot \beta + 2 \tan \beta$

d) None of these