

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DIGITAL ELECTRONICS AND INTEGRATED CIRCUIT SEMESTER - 4

Time: 3 Hours		• •		[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Cho	ose ti	ne correct alternatives for any	ten of t	he following: $10 \times 1 = 10$
i)	Exc	ess-3 coded representation of	f (19) ₁₀	₀ is
	a)	10011	b)	00011001
	c)	01001100	d)	11000100.
i)	The	decimal equivalent of the bir	ary nun	nber (101111.1101) ₂ is
	a)	(46.8125) ₁₀	b)	(47.8125) ₁₀
	c)	(47.8155) ₁₀	d)	(47.8145) ₁₀ .
ii)		O MHz signal is applied to a output frequency will be	MOD 5	counter followed by a MOD 8 counter.
	a)	10 kHz	b)	2.5 kHz
	c)	5 kHz	d)	25 kHz.
v)	A 4	stage ripple counter counts i	ipto .	
	a)	12	b)	15
	c)	11	d)	4.
)	Wh	ich family has the better nois	e margin	Section 1997 and the second section of the second section 1997.
	a)	ECL	b)	ĎTL
	c)	MOS	d)	TTL:
ri)	On	a Karnaugh map, grouping o	OS prod	duces
	a)	a PVS expression	b)	an SOP expression
	c)	a don't care condition	d)	none of these.
/ii)	The	number of flip-flops required	l for a M	OD-10 ring counter is
	a)	10	b)	5
	c)	4	d)	12.

24504-(III)-B

7.					June
viii)	Circ	uit hazards are present in			
	a)	combination circuits only	i e e e		
	b)	combination and sequential	circuit o	nly	
	c)	sequential circuits only			
	d)	none of these.			
ix)	Whe	en two <i>n</i> -bit binary numbers a	re addec	d, the sum will contain at the n	nost
	a)	n bits	b)	n+1 bits	
	c)	n + 2 bits	d)	n + n bits.	
x)	In a	binary R-Z-R ladder DAC, the	input r	esistance of each input is	
	a)	. R	b)	2R	
	c)	3 <i>R</i>	d)	4R.	
xi)	The	number of control lines for a	8 to 1 m	nultiplexer is	
	a)	2	b)	3	
	c)	4	d)	5.	
xii)	The	simplification of the Boolean	expressi	on $(A + \overline{A} + B + C)$ is	
	a)	0	b)	+1 ¹ ,	
•	c)	A	d)	BC.	
		GRO	UP – B		
		(Short Answer	Type Q	uestions)	
	-	Answer any three	e of the	following. 3	× 5 = 15
Expl	ain r	ace around condition of J-J	K flin-fl	op. Show how this condition	ı can be
	~~~ 1	acc accuracy constrained of c			

- 2. avoided.
- Simplify the Boolean function using K-map:

$$F(A, B, C, D) = \sum m(0, 1, 2, 8, 10, 11, 14, 15).$$

- Design a full subtractor using (i) NAND gates, (ii) NOR gates. 4.
- Simplify algebraically,  $Y = AB + A\overline{B} \left( \overline{A} \overline{C} \right)$ . 5.

24504-(III)-B



- Define the following terms as applied to digital circuits: 6.
  - Set-up time a)
  - Hold time b)
  - Maximum clock frequency c)
  - d) Fin in
  - Power dissipation. e)

#### GROUP - C

## (Long Answer Type Questions)

Answer any three questions.  $3 \times 15 = 45$ 

S-(Tib-2008

- What is the difference between a latch and a edge triggered flip-flop? 7. a)
  - Design a clocked R-S fip-flop using NAND gates. Explain its principle of b) operation.
  - Design a MOD 10 synchronous binary UP conter using J-K flip-flop and c) 3 + 8 + 4necessary logic gates.
- Describe the operation of successive approximation type ADC. How many clock a) 8. pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC?
  - Draw a neat diagram of a R-2R ladder type DAC. b) .
  - Design a sequential circuit that implements the following state diagram. Use all c) 5 + 3 + 7D-type flip-flops for the design.





# ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DIGITAL ELECTRONICS AND INTEGRATED CIRCUIT SEMESTER - 4

<u></u>		and the second s	the state of the s
Time: 3 Hours]	•		[ Full Marks : 70
· · · · · · · · · · · · · · · · · · ·			[ * *** ********** , / */

			( Multiple Che	oice Type	Questions )				
1.	Cho	ose t	he correct alternatives for a	ny ten of ti	the following: $10 \times 1 =$	10			
	i)	Exc	Excess-3 coded representation of (19) ₁₀ is						
		a)	10011	<b>b</b> )	00011001				
		c)	01001100	d)	11000100.				
	ii)	The	e decimal equivalent of the b	lnary nun	nber (101111.1101) ₂ is				
		a)	( 46.8125 ) ₁₀	<b>b</b> )	( 47.8125 ) ₁₀				
•		<b>c</b> )	( 47.8155 ) ₁₀	d)	( 47.8145 ) ₁₀ .				
	ш)		0 MHz signal is applied to output frequency will be	a MOD 5	counter followed by a MOD 8 count	er.			
		a)	10 kHz	<b>b</b> )	2·5 kHz				
	<i>*</i> .	<b>c</b> )	5 kHz	d)	25 kHz.				
	iv)	A 4	-stage ripple counter counts	upto .					
		a)	12	<b>b</b> )	15				
		<b>c</b> )	11	d)	4.				
	v)	Wh	ich family has the better noi	se margin					
		a).	ECL	<b>b</b> )	DTL				
		c)	MOS	d)	TTL: See a set of the second				
	vi)	On	a Karnaugh map, grouping	of OS prod	uces				
		a)	a PVS expression	<b>b</b> )	an SOP expression				
		c)	a don't care condition	<b>d</b> )	none of these.				
	vii)	The	number of flip-flops require	ed for a MO	DD-10 ring counter is				
		a)	10	<b>b</b> )	5				
		c)	4	d)	12.				

24504-(III)-B