

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 DIGITAL ELECTRONICS & INTEGRATED CIRCUITS SEMESTER - 4

Time: 3 Hours [Full Marks: 70				
	Time: 3 Hours]			[Full Marks : 70

GROUP - A

(Multiple Choice Type Questions)

b) d)	one seven. hexadecimal number is (1E·AD) ₁₆	AB' + AB' C')
b) d) ivalent b)	one seven. hexadecimal number is $(1E \cdot AD)_{16}$	
d) ivalent b)	seven. hexadecimal number is $(1E \cdot AD)_{16}$	
ivalent b)	hexadecimal number is	
b)	(1E·AD) ₁₆	
•		er eller alle en
d)		
	None of these.	
ode is		
b)	1110100110	
d)	1000110100.	
propaga	ation delay and T is the j	period of pulse
owing	conditions can avoid the	e race around
b)	$2t_p > \Delta t > T$	
d)	$2t_p < \Delta t < T$.	
which	one of the number system	ns with base?
•	Base 6	
b)	Base 4.	
	b) d)	b) Base 6

IV-247322 (3A)

vi)	Whi	ch one of the follo	owing is a self	comple	menting code?	
	a)	Ex-3 code		b)	Gray code	
	c)	8421 code		d)	None of these.	
vii)	A cl	ock frequency of	100 kHz is apı	olied to	MOD - 8 followed by a d	ecade counter
	Wha	at will be the outp	out frequency?	?		
	a)	12·5 kHz		b)	10 kHz	
	c)	1·25 kHz		d)	None of these.	
viii)	A 3-	bit synchronous	counter uses	flip-flop	s with propagation delay	time of 20 ns
	each	n. The maximum	possible time r	equired	for change of state will l	pe .
	a)	60 ns		b)	40 ns	
	c)	20 ns		d)	none of these.	
ix)	If th	ne negative logic	is used, the	diode	gate shown in the giv	en figure will
	repr	esent				•
	:			0 = 0V V = -5V		
	a)	OR gate		b)	AND gate	
	c)	NOR gate		d)	NAND gate.	
x)	The	minimum numb	per of NAND (gates r	equired to implement A	∆+AB+ABC is
	equa	al to				
	a)	0		b)	1	•
	c)	4		d)	7.	
4732	2 (3A	<u>স</u>				

	xi)	In star	ndard TTL,	the "totem	pole" sta	ge refe	ers to the	
		a) 1	nulti-emitt	eer i/p stag	(e	b)	phase splitter	
		c) (o/p buffer			d)	open collector o/p stage.	
•	xii)	The S	OP form of	logical exp	pression	is mo	st suitable for designing le	ogic circuits
		using	only					
 		a) :	XOR gates			b)	NOR gates	
		c)	NAND gaes		t vj. i	d)	OR gates.	
*2".					GROUP	- B		
	•		•	(Short Ar	aswer Ty	pe Qu	estions)	
				Answer ar	ny three (of the	following.	$3 \times 5 = 15$
2.	Wha	t is fan	out? Wha	it is the ba	sic differ	ence o	of a latch and edge triggere	ed flip-flop?
	Desi	gn a 9-l	oit even par	rity generate	or circuit	•		1+1+3
3.	Desi	gn BCD	-Excess 3	code conver	ter using	basic	logic gates with proper tru	th table. 5
4.	Wha	t is Rac	e Around c	ondition ? I	Explain t	he wo	rking of Master-Slave Flip-f	lop. 1 + 4
5.	Draw	v a neat	diagram o	f a R-2R lac	lder type	DAC	and explain its operation.	5
6.	Draw	the ne	at diagram	of a 4 bit	Bi-direct	ional	Shift register using mode o	control (M).
	When	n M is le	ogic zero th	en left shift	t and rigi	nt shif	t for M are logic one.	5

5.

6.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

a) What do you mean by Prime implicant? Simplify the following Boolean expression using K-map:

 $F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 11, 12, 14) + d(1, 4, 9, 10)$

- b) Design full adder using two half adders and necessary gate.
- c) Draw a network using only NAND gate to generate the function $Y = (\overline{A} + BC)$.

(2+5)+4+4

- 8. a) What are the advantage and disadvantage of totem pole?
 - b) What are the output voltages caused by logic 1 in each bit position in an 8 bit ladder if the input level for 0 level is 0 volt and for level 1 is 10 volt?
 - c) Compare the maximum conversion period of an 8 bit Digital ramp ADC and 8 bit successive approximation ADC if both utilize 1 MHz clock frequency?
 - d) With proper circuit diagram explain the operation of NMOS NAND gate.3 + 3 + 4 + 5
 - a) Perform the conversion of D flip-flop to J-K flip-flop.
 - b) What is presettable counter? Design a MOD-5 counter that counts its natural count sequence from 000 to 100.
 - c) Distinguish between a ripple counter and synchronous counter.

5 + 8 + 2

- 10. a) What are the differences between the Decoder and Demultiplexer?
 - b) Form a multiplexer tree to give 4X1 MUX from two 2X1 MUX.
 - c) Show how a 16 input MUX is used to generate the function

$$F = (A,B,C,D) = \overline{ABCD} + BCD + A\overline{BC} + AB\overline{CD}$$
.

5 + 5 + 5

- 11. a) What are RAM and ROM? What is the basic difference between EPROM and EEROM?
 - b) What is the major difference between the two classes of finite state machines and proper state diagram?
 - c) What is Schmitt Trigger?

(2+3)+(4+4)+2

9.