## Formulae

Let $a x+b y=c$, where $a, b$ are given integers and $x, y$ are unknown integers. Suppose at least one of $a, b$ is not zero. Then let $\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. If g does not divide c then there are no solutions to this problem.

I leave it to you to prove that if $x$ and $y$ have no common factor, then the diagonal of an $x$-by-y rectangle intersects $x+y-1$ tiles.

For a quadrilateral with sides $a, b, c, d$, and for which $q$ is half the sum of two opposite angles (it doesn't matter which pair), the area is given by:
$A=J^{\prime}\left[(s-a)(s-b)(s-c)(s-d)-a b c d \cos ^{2} q\right]$.
For a cyclic quadrilateral, i.e., a quadrilateral that can be inscribed in a circle, and for which the sum of opposite angles is $180^{\circ}, \cos q=0$, thereby maximizing the area.

How many squares are there in $\mathrm{a} 8 \times 8$ square?
How many rectangles are there?
Find an equation that will find out the number of squares simply by knowing the size of the square.

The "equation" must be
$N=(9-m)(9-n)$ where $N$ is the number of rectangles, $m$ is the height of the rectangle and n is the width of the rectangle.

I hope that this helps
No of squares $=\Sigma \mathrm{n}^{\wedge} \mathbf{2}$ (where n is the dimension of the square)

## Circle

All points on the circumference of a circle are equidistant from its center.

Radius: r
Diameter: d
Circumference: C
Area: K
$d=2 r$
$C=2 P i r=P i d$
$K=P i r^{2}=P i d^{2} / 4$
$C=2 \operatorname{sqrt}(\mathrm{Pi} K)$

$\mathrm{K}=\mathrm{C}^{2} / 4 \mathrm{Pi}=\mathrm{Cr} / 2$

To read about circles, visit The Geometry Center.


ECCENTRICITY届 ELENATEBI

## Arc of a Circle

A curved portion of a circle.
Length: s
Central angle:
theta (in radians),
alpha (in degrees)
$s=r$ theta $=r$ alpha $\mathrm{Pi} / 180$


## Segment of a Circle

Either of the two regions into which a secant or a chord cuts a circle.

Chord length: c
Height: h
Distance from center of circle to chord's midpoint: d Central angle: theta (in radians), alpha (in degrees)

Area: K
Arc length: s


```
theta \(=2 \arccos (d / r)=2 \arctan (c /(2 d))=2 \arcsin (c /(2 r))\)
\(h=r-d\)
\(c=2 \operatorname{sqrt}\left(\mathrm{r}^{2}-\mathrm{d}^{2}\right)=2 r \sin (\) theta \(/ 2)=2 d \tan (\) theta \(/ 2)=2 \operatorname{sqrt}[h(2 r-h)]\)
\(\mathrm{d}=\operatorname{sqrt}\left(4 \mathrm{r}^{2}-\mathrm{c}^{2}\right) / 2=\mathrm{r} \cos (\) theta \(/ 2)=\mathrm{c} \cot (\) theta \(/ 2) / 2\)
\(K=r^{2}[\) theta-sin(theta) \(] / 2=r^{2} \arccos ([r-h] / r)-(r-h) \operatorname{sqrt}\left(2 r h-h^{2}\right)\)
    \(=r^{2} \arccos (d / r)-d \operatorname{sqrt}\left(r^{2}-d^{2}\right)\)
theta \(=\mathrm{s} / \mathrm{r}\)
\(\mathrm{K}=\mathrm{r}^{2}[\mathrm{~s} / \mathrm{r}-\sin (\mathrm{s} / \mathrm{r})] / 2\)
```

2) For much more about segments of circles, see The Arc, Chord, Radius, Height, Angle, Apothem, and Area.

## Counting Rectangles within Rectangles

## Squares

How many squares can be found in the checkerboard shown in the figure, below?


There is one $8 \times 8$ square, the outer border of the figure. There are four $7 \times 7$ squares, one aligned with each corner. There are nine $6 \times 6$ squares, etc. So the sum of the first 8 squares $1+4+9+16+25+36+47+64=204$ is the answer. In general, the sum of the first n squares is given by the formula

$$
\left(2 n^{3}+3 n^{2}+n\right) / 6
$$

Formulas for sums of the first n numbers of a given power are always polynomials of degree one higher than the given power. ${ }^{\text {T }}$ For example, the sum of $n$ fourth powers is given by a fifth degree polynomial in $n$. The Method of Successive Differences can be used to find such polynomials.

## Rectangles

Now, how many rectangles can be found within an $m \times n$ rectangle?
The answer to this question is the same as the answer to another question:
How many ways can I draw two horizontal lines and two vertical lines through an array of $(m+1)$ by $(n+1)$ dots?
(Think of the dots formed at the corners of the little squares within the rectangle)

The two horizontal lines can be drawn C( $\mathrm{m}+1,2$ ) ways, and the two vertical lines can be drawn $C(n+1,2)$ ways, so the total number of rectangles within an $\mathrm{m} \times \mathrm{n}$ rectangle is

$$
C(m+1,2) C(n+1,2)
$$

## Squares within Rectangles

How many squares can be found within an $m \times n$ rectangle? ( $m>n$ ) To answer this question, start with an $\mathrm{n} \times \mathrm{n}$ square, and then you know the number of squares in this portion of it from the first section:

$$
\left(2 n^{3}+3 n^{2}+n\right) / 6
$$

Now, consider adding one row of squares at the bottom, making it an $n+1$ by $n$ rectangle. Think of the dots formed at the corners of the little squares you added to make the bottom row. Now, for every pair of newly-added dots, you can find one new square. So the number of new squares you can find in the now larger rectangle is the number of pairs of $n+1$ dots, which is $C(n+1,2)$. If you need convincing, there's another way to think of it. By adding a new row of $n$ little squares, you can now find within the large rectangle one new $n \times n$ square, two new $n-1 \times n-1$ squares, three new $n-2 \times n-2$ squares, etc. So the number of new squares added this way is the sum of the first $n$ counting numbers, which is $C(n+1,2)$.
Now, add another row of squares at the bottom, making it an $n+2$ by $n$ rectangle. This adds the same number of new squares, $C(n+1,2)$.
Now I'm sure you see the picture. The number of squares that can be found within an $m \times n$ rectangle $(m>n)$ is given by this formula:


## Sector of a Circle

The pie-shaped piece of a circle 'cut out' by two radii.

Central angle:
theta (in radians),
alpha (in degrees)
Area: K
Arc length: s

$$
\begin{aligned}
& \mathrm{K}=\mathrm{r}^{2} \text { theta } / 2=\mathrm{r}^{2} \text { alpha } \mathrm{Pi} / 360 \\
& \text { theta }=\mathrm{s} / \mathrm{r} \\
& \mathrm{~K}=\mathrm{rs} / 2
\end{aligned}
$$


$a^{\wedge} p=1(\bmod n)$ where $a, n$ are co-prime and $p$ is the number less than $n$ co-prime to $n$.

Thus, $3^{\wedge} 144=1(\bmod 1729)$
and $2^{\wedge} 144=1(\bmod 1729)$
if $n=x^{*} y^{*} z$ then
co-prime to n and less than n are
$n^{*}(1-1 / x)^{*}(1-1 / y)^{*}(1-1 / z)$


When a number is successfully divided by two divisors $d_{1}$ and $d_{2}$ and two remainders $r_{1}$ and $r_{2}$ are obtained, the remainder that will be obtained by the product of $d_{1}$ and $d_{2}$ is given by the relation
$\mathrm{d}_{1} \mathrm{r}_{2}+\mathrm{r}_{1}$. ECCENTRICITYA ELEVATEDI
Where $d_{1}$ and $d_{2}$ are in ascending order respectively and $r_{1}$ and $r_{2}$ are their respective remainders when they divide the number.

Two numbers when divided by a common divisor, if they leave remainders of $x$ and $y$ and when their sum is divided by the same divisor leaves a remainder of $z$, the divisor is given by $x+y-z$.

