\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA. Sem-II Remedial Examination December 2010

Subject code: 620007
 Subject Name: Theory of Computation

Date: 22 /12/2010
Time: $10.30 \mathrm{am} \mathbf{- 0 1 . 0 0} \mathrm{pm}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) 1. Prove the statement " $(p \vee q) \rightarrow r$ and $(p \rightarrow r) \vee(q \rightarrow r)$ are logically 03
equivalent".
4. Show that for any integer $\mathrm{n}>2$, there is a prime p that must satisfy $n<p<n$! 02
5. Explain the logical quantifiers and quantified statement. 02
(b) 1. Define Fibonacci function (f) in terms of recursion. Prove that for every $\mathrm{n} \geq 0$ 04

$$
f(n) \leq(5 / 3)^{n}
$$

2. Define Regular language \& give the Regular expression corresponding to the strings having even length
Q. 2 (a) 1. Given regular expressions are
$r=0^{*}+1^{*}$ and $s=01^{*}+10^{*}+1^{*}+\left(0^{*} 1\right)^{*}$
(1) Give the strings corresponding to r but not in s.
(2) Give the strings corresponding to s but not in r.
(3) Give the strings corresponding to both r and s.
3. Give regular expression corresponding to strings ending in $1 \&$ not
containing 00 .
4. Construct a DFA that recognizes the language
$\mathrm{L}=\left\{x \in\{0,1\}^{*}| | x \mid \geq 3\right.$ and $3^{\text {rd }}$ symbol from the right side in x is 1$\}$
(b) 1. Define NFA with suitable example in details. Also differentiate NFA and DFA. 04
5. Show that, any Language is recognized by an NFA if and only if it is 03 recognized by a DFA

OR

(b) 1. Calculate and define recursive definition of extended notation of δ for NFA. $\mathbf{0 4}$
2. Show that any NFA has its equivalent DFA, accepting the same language L.

03
Q. 3 (a) Prove that any regular language can be accepted by a finite automaton with all 07 details
(b) 1. Convert a regular expression $(0+1)^{*}(10)+(00){ }^{*}(11)^{*}$ to an NFA- Λ. $\mathbf{0 5}$
2. For the following finite automaton calculate $r(1,3,1)$ and $r(3,2,1)$.

Q. 3 (a) 1. Find the minimized DFA for the following:

2. Define Myhill and Nerode's Theorem for the regular languages and show that
$\mathrm{L}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is non regular.
(b) Find the unambiguous context-free grammar for the language of all algebraic expressions involving parenthesis, the identifier a, and the following four binary operators $+,-,{ }^{*}, \& /$.
Q. 4 (a) Construct a DPDA to accept the language of strings with more a's than b's given by

$$
\mathrm{L}=\left\{\mathrm{x} \in\{a, b\}^{*} \mid \mathrm{n}_{\mathrm{a}}(\mathrm{x})>\mathrm{n}_{\mathrm{b}}(\mathrm{x})\right\}
$$

(b) 1. Remove the Λ-productions from the CFG with given productions and find a CFG
generating the equivalent language without Λ.

$$
\mathrm{S} \rightarrow \mathrm{AB}|\Lambda \quad \mathrm{~A} \rightarrow \mathrm{aASb}| \mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{bS}
$$

2. Explain the Chomsky's Hierarchy.

OR

Q. 4 (a) Design the PDA \& its corresponding CFG for the language that accepts simple palindromes given by $\mathrm{L}=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}$
(b) Convert the CFG with following productions to CNF:
$\mathrm{S} \rightarrow \mathrm{AACD} \quad \mathrm{A} \rightarrow \mathrm{aAb} \mid \Lambda$
$\mathrm{C} \rightarrow \mathrm{aC} \mid \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}| \Lambda$
Q. 5 (a) Explain Pumping Lemma for the Context-Free Language and verify the language
(b) 1. Show that if $L_{1} \& L_{2}$ are recursive languages, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursive
2. Explain the concept of Context-Sensitive grammar.

OR
Q. 5 (a) Construct a Turing Machine that accepts the language of palindromes over $\{a, b\}$ Also specify the moves to trace the strings $a b a a, a b b a, a a b a a$.
(b) 1. Construct a Turing Machine for accepting $\{a, b\}^{*}\{a b a\}\{a, b\}^{*}$
2. Define Turing Machine and give its advantages.

