
AIEEE – 2009

Maximum Marks: 315

Passage – I (Question 33 to 35) : A particle slides down a smooth inclined plane of elevation θ fixed in an elevator going up with an acceleration a_0 . The base of the incline has a length L.

a₀

П

m A

16. The acceleration of particle with respect to the incline :

(a) $g \sin \theta$	(b) $a_0 \sin \theta$		
(c) $(g + a_0) \sin \theta$	(d) $(g \sin \theta -$	$+ a_0 \cos \theta$	

17. The time taken by the particle to reach the bottom :

(a)
$$t = \left(\frac{2L}{g\sin\theta}\right)^{1/2}$$
 (b) $\left(\frac{2L}{(g+a_0)\sin\theta\cos\theta}\right)^{\frac{1}{2}}$ (c) $\left(\frac{2L}{a_0\sin\theta}\right)^{1/2}$ (d) $\left(\frac{2L}{(g+a_0)\sin\theta}\right)^{1/2}$

18. If the elevator going up with constant velocity, the time taken by the particle to reach the bottom is :

(a)
$$\left(\frac{2L}{g\sin\theta\cos\theta}\right)^{1/2}$$
 (b) $\left(\frac{2L}{g\sin\theta}\right)^{1/2}$ (c) $\left(\frac{2L}{g\cos\theta}\right)^{1/2}$ (d) None of these

19. Three equal weights of mass m each are hanging on a string passing over a fixed pulley. Tension string between B and C :

(a)
$$\frac{4}{5}$$
 mg (b) $\frac{2}{3}$ mg (c) $\frac{1}{3}$ mg (d) mg

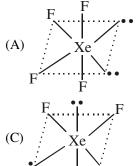
20. The kinetic energy acquired by a mass m in traveling a certain distance d, starting from rest, under the action of force F such that the force F is directly proportional to t, is

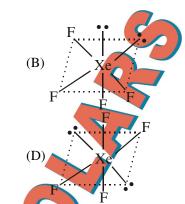
- (a) Directly proportional to t²
 (b) Independent of t
 (c) Directly proportional to t⁴
 (d) directly proportional to t
- **21.** A body is acted upon by a force which is inversely proportional to the distance covered. The work done will be proportional to

(a) s (b)
$$s^2$$
 (c) s^2 (d) v^2

1

22. At what height will a body of mass m thrown vertically up have its kinetic energy 75% of its initial value ?


(a)
$$\frac{h}{6}$$
 (b) $\frac{h}{5}$ (c) $\frac{h}{4}$ (d) $\frac{h}{3}$


23. A body, constrained	to move in x-direction is su	bjected to a force $F = (-2\hat{i})$	$+15\hat{j}+6\hat{k})N$. The work done
by this force in movin (a) 20 J	ng the body through 10î is (b) 150 J	(c) 160 J	(d) Zero
24. A particle is displaced	d to position $(3\hat{i} + 2\hat{j} - 2\hat{k})$	from $(2\hat{i} - \hat{j} + \hat{k})$ under the	e action of a force $(2\hat{i} + \hat{j} - \hat{k})$
Newton. The work do			
(a) 8 25 If binatic analysis of a	(b) 10	(c) 12	(d) 36
(a) 100%	body is increased by 300% t (b) 150%	(c) 265%	(d) 73.2%
		rds with a speed of 5 m/s.	The work done by the force of
(a) 12.5 J	the particle goes up is (b) 5 J	(c) <u>-</u> 5 J	(d) –12.5 J
	varies with time (t) as x = of motion. Mass of the body		ease in its kinetic energy one
(a) 8 J	(b) 16 J	(c) 32 J	(d) 64 J
	ne potential energy of the str	etched spring is	stretches the spring through a
(a) mg $(l + y)$	(b) $\frac{1}{2}$ mg (1 + y)	(c) $\frac{1}{2}$ mgy	(d) mgy
29. Force acting on a par	ticle moving in a straight lir	e varies with velocity of the	the particle as $F = \frac{K}{v}$, where K
is a constant. The wor	rk done by this force in time	t is	
(a) $\frac{K}{v^2}t$	(b) 2 Kr	(c) Kt	(d) $\frac{2Kt}{v^2}$
30. A tennis ball dropped the energy lost in the		ands to 2.5 m only on hitting	ng the ground. The fraction of
(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{1}{8}$
	a straight line with retardation according to a straight line with retardation at the straight to a	on proportional to its disp	blacement. The loss of kinetic
(a) π^{2}	$(\mathbf{h}) a^{\mathbf{X}}$	(c) x	(d) log _e x
32. The potential energy	of a 1 kg particle free to mov	ve along the x-axis is given	by $U(x) = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)J$
	energy of the particle is 2 J.	Then, the maximum speed	
(a) $\frac{1}{\sqrt{2}}$	(b) 2	(c) $\frac{3}{\sqrt{2}}$	(d) $\sqrt{2}$
	U(x) is given by $U(x) = 20$		tg particle that moves along x- neters. At $x = 5$ m the particle
33. What is mechanical e (a) 29 J	nergy of the system (b) 20 J	(c) 49 J	(d) 19 J
34. The maximum kinetic (a) 20 I		(a) 40 I	I 90 (b)

(a) 29 J (b) 20 J (c) 40 J (d) 98 J **35.** Force what (finite) value of x does F(x) = 0(a) x = 2 m (b) x = 4 m (c) x = 0 m (d) x = 1 m

CHEMISTRY

36. Which is/are the structure of XeF₄?

37. The correct order of bond angles of the X - N -X bond (where X is the surrounding atom or group of atoms)

(A) $NH_4^+ > N(CH_3)_3$	$_{3}$ > NH ₃ > NF ₃
--------------------------	--

(C) $NH_3 > NF_3 > NH_4^+ > N(CH_3)_3$

(B) $NH_4^+ < N(CH_3)_3 < NH_3 < NF_3$ (D) $\dot{N}H_3 > NF_3 > N(CH_3)_3 > NH_4^+$

38. Specify the coordination geometry around and hybridization of N and B atoms in a 1 : 1 complex of BF₃ and NH₃ (B) N : Pyramidal, sp³; B : pyramidal, sp³ (A) N : tetrahedral, sp^3 , B : tetrahedral (D) N : pyramidal, sp^3 ; B : tetrahedral, sp^3

```
(C) N : pyramidal, sp<sup>3</sup>, B : planar, sp
```

- 39. Most efficient overlapping is (A) $sp^{2} - sp^{2}$ (C) $sp^{3} - sp^{3}$
- (B) s s(D) sp - sp
- A number of ionic compounds, e.g. AgCl, CaF₂ and BaSO₄ are insoluble in water. This is because 40. (A) ionic compound do not dissolve in water (B) water has a high dielectric constant
 - (C) water is not a good ionizing solvent
 - (D) these molecules have exceptionally high attractive forces in lattice

41.	Solid CH ₄ is a	
	(A) molecular solid	(B) covalent solid
	(C) ionic solid	(D) none of these

- 42. The order of increasing polarity in HCl, CO₂, H₂O and HF molecules is (A) CO₂, HCl, H₂O, HF (B) HF, H₂O, HCl, CO₂ (C) CO₂, HCl, HC, H₂O (D) CO₂, HF, H₂O, HCl
- 43. Which of the following contain both polar and non-polar bonds? (A) NH₄Cl (B) HCN $(D) CH_4$ $(C) H_2O_2$
- 44. How many σ and π electrons are present in the molecule $(CN)_2 - C = C - (CN)_2$? (B) 18 sigma and 14 pi electrons (A) 9 sigma and 7 pi electrons (C) 9 sigma and 9 pi electrons (D) 18 sigma and 18 pi electrons

45.	Which of the following bonds is the strongest?	
	(A) F - F	(B) I – I
	(C) Cl - Cl	(D) Br – Br

46.		g has highest dipole mo		
	(A) NF ₃ (C) NCl ₃		(B) NH ₃ (D) CCl ₄	
47.	The structure of IF ₅ ca F	an be best described as	F	
	(A) F $/$ 72°		(B) F	
	F	<u>-</u>	720	F
	F		F	
	F			
	(C) F / 90°		(D) None	
	90° I - F			
	F			
	I.			
48.	Which of the followin (A) Tetrahedral	g structure is most expe (B) Square pyramidal	C Square planar	eOF ₄ ? (D) Octahedral
49.	Which hybrid state ca (A) sp ³ d	n not be shown by carbo $(B) sp^3$	$(C) sp^2$	(D) sp
	(A) sp u	(b) sp	(C) sp	(D) sp
50.	-		n also then Sc(21) woul	d have electronic configuration
	as (other rules strictly (A) $1s^2 1p^6 2s^2 2p^6 2d$	followed) 3^3 3s ²	(B) $1s^2 1p^6 2s^2 2p^6 3s^2$	2 3d ¹
	(C) $1s^2 2s^2 2p^6 3s^2 3p^6$	5° 3d ¹ 4s ²	(D) $1s^2 2s^2 2p^6 3s^2 3p^6$	$3d^3$
51.	If the radius of first B	ohr orbit is x, then de Br	oglie wavelength of elect	tron in 3 rd orbit is nearly
011	(A) $2\pi x$	(B) 6πx	(C) 9x	(D) $\frac{x}{3}$
50				5
52.		$1 \sqrt{h}$	ll then uncertainty in mor h	mentum will be mh
	(A) $\frac{1}{2}\sqrt{\frac{\mathrm{mh}}{\pi}}$	(B) $\frac{1}{2}\sqrt{\frac{\pi}{\pi m}}$	(C) $\frac{\pi}{4\pi m}$	(D) $\frac{\pi\pi}{4\pi}$
53.	-		ectron in an atom are n :	= 3, l = 1, m = 0, s = 1/2, the
	atomic number of the (A) 34	(B) 17	(C) 12	(D) 19
54.	The number of waves +2 is	s made by a Bohr electr	on in an orbit of maxim	um magnetic quantum number
	(A) 3	(B) 4	(C) 2	(D) 1
55.		g sets of quantum numb		1
	(A) $n = 3, l = 1, m = 4$ (C) $n = 3, l = 0, m = 0$		(B) $n = 3, l = 1, m = +$ (D) $n = 3, l = 2, m = \pm$	
56.	A proton has wavelen (A) 0.0926 V	gth 1A. The potential by (B) 0.0502 V	which the proton is acce (C) 0.0826 V	(D) 51.2 V
			. ,	
57.	An electron is moving this electrons?	g with a kinetic energy o	f 4.55×10^{-25} J. What wi	ll be de Broglie wavelength for
	(A) 5.28×10^{-7} m	(B) 7.28×10^{-7} m	(C) 2×10^{-10} m	(D) 3×10^{-5} m

(Å) 4 (B) 8 (C) 18 (D) 22 59. An electron in energy level n = 1 is given energy E which is slightly more than energy required to excite to level n = 2 and less than energy required to excite to level n = 5. The electron will (A) be excited to level n = 2 (B) be excited to level n = 3 (C) not be excited (D) be ionized	58.				ts de Broglie wavelength. The er this circumstance will be
excite to level n = 2 and less than energy required to excite to level n = 3 The electron will (A) be excited to level n = 2 (B) be excited to level n = 3 (C) not be excited A photon of wavelength 300 nm is absorbed by a gas and then reemitted as two photons. One photon is red with wavelength of 760 nm. The wave number of the seemin photon will be (A) 2.02 × 10 ⁶ m ⁻¹ (B) 3.02 × 10 ⁶ m ⁻¹ (C) 1.02 × 10 ¹⁰ (D) 2.2 × 10 ⁶ m ⁻¹ Energy levels of A, B, C of a certain atom correspond to increasing values of energy i.e. Eq. (Eq. 17, h ₂ , h ₃ , h ₄ , h ₅ , C as are the wavelengths from C 10B (B to A, C to A respectively which of the following relation is correct? (A) $\lambda_3 = \lambda_1 + \lambda_2$ (B) $\lambda_3 = \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)}$ (D) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ (D) $\lambda_1^2 = \lambda_1^2 + \lambda_2^2$ 42. An electron of velocity 'v' is found to have a certain value of de Broglie wavelength. The velocity to be possessed by the neutron to have same wavelength is (A) 1840 v (B) v1840 (O v (D) 1840V (C) velocity and mass of electron (B) mass of electron only (C) velocity and mass of electron (B) mass of electron only (C) velocity and mass of electron (B) neas of electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = +1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) an anticleckwise rotation of electron (C) a quantum number with depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron is as (A) particles only (B) MnO ₂ (C) MnO ₄ ⁻¹ (D) MnO ₄ ²⁻¹ (E) both simultaneously (D) sometimes wave and sometimes particle (A) Mn ₂ O ₃ (B) MnO ₂ (C) MnO ₄ ⁻¹ (D) MnO ₄ ²⁻¹ (B) 0.64 (B) 33 (C) 68 (D) 64 (D) 64 (••	(B) 8	(C) 18	(D) 22
 is red with wavelength of 760 nm. The wave number of the second photon will be (A) 2.02 × 10⁶ m⁻¹ (B) 3.02 × 10⁶ m⁻¹ (C) 1.02 × 10¹ m⁻¹ (D) 2.22 × 10⁶ m⁻¹ 61. Energy levels of A, B, C of a certain atom corresoing to increasing values of energy i.e. E_A < E_B < E_C. If λ₁, λ₂, λ₃ are the wavelengths from C to B, B to A, C to A respectively which of the following relation is correct? (A) λ₃ = λ₁ + λ₂ (B) λ₃ = (λ₁λ₂/(λ₁ + λ₂) (C) λ₁ + λ₂ + λ₃ = 0 (D) λ₃² = λ₁² + λ₂² 62. An electron of velocity 'v' is found to have a vertice number of the Broglie wavelength. The velocity to be possessed by the neutron to have same wavelength: (A) 1840 v (B) 1840 v (C) v (D) 1840v 63. The de Broglie equation describes the relationship of wavelength associated with the motion of an electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) istance from the nucleus 64. For which one of the following sets of mantum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = + 1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) MaO₂ (C) MnO₄⁻¹ (D) MnO₄²⁻² 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentag	59.	excite to level n = 2 ar (A) be excited to level	nd less than energy requir	red to excite to level n = (B) be excited to leve	3. The electron will
 61. Energy levels of A, B, C of a certain atom correspond to increasing values of energy i.e. E_A < E_B < E_C. If λ₁, λ₂, λ₃, a₅ are the wavelengths from C to B, B to A, C to A respectively which of the following relation is correct? (A) λ₃ = λ₁ + λ₂ (B) λ₃ = (λ₁λ₂/(λ₁ + λ₂) (C) λ₃ + h₂ + λ₃ = 0 (D) λ₃² = λ₁² + λ₂² 62. An electron of velocity 'v' is found to have a certain value of de Broglie wavelength. The velocity to be possessed by the neutron to have same wavelengthrs. (A) 1840 v (B) v/1840 (C) v (D) 1840/v 63. The de Broglie equation describes the relationship of wavelength associated with the motion of an electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) (D) distance from the nucleus 64. For which one of the following sets of annutum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = 1/2 (D) n = 5, l = 0, m = 0, s = -1/2 65. Spin of electron is (A) rotation of electron and anticity sound axis (B) clockwise and anticlockwise potation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron in an atom is as (A) particles only (B) MaO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) required to mix to produce one liter of 1 N acid solution are respectively. (A) 20 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt/vol.) solution of H₂SO₄ of density 1.1 g/cm³ is appr	60.	is red with wavelength	n of 760 nm. The wave nu	umber of the second pho	oton will be
 62. An electron of velocity 'v' is found to have a certain value of de Broglie wavelength. The velocity to be possessed by the neutron to have same vavelength is (A) 1840 v (B) v/1840 (C) v (D) 1840/v 63. The de Broglie equation describes the relationship of wavelength associated with the motion of an electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) distance from the nucleus 64. For which one of the following sets of quantum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = + 112 (B) n = 4, l = 2, m = -1, s = + 11/2 (C) n = 4, l = 1, m = 0, s = -1/2 (B) n = 5, l = 0, m = 0, s = -1/2 65. Spin of electron is (A) postion of electron adult if sown axis (B) clockwise and anticlockwise totation of electron (C) both simultaneously (D) sometimes wave and sometimes particle 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) MnO2 (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) required to not acid solution are respectively. (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y)	61.	Energy levels of A, $E_A < E_B < E_C$. If λ_1 , λ	B, C of a certain at $_2$, λ_3 are the wavelengths	om correspond to inc	reasing values of energy i.e.
be possessed by the neutron to have same varied entry is (A) 1840 v (B) $\sqrt{1840}$ (C) v (D) 1840/v 63. The de Broglie equation describes the relationship of wavelength associated with the motion of an electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) distance from the nucleus 64. For which one of the following sets of quantum numbers, an electron will have the highest energy? (A) $n = 3, l = 2, m = 1, s = + 1/2$ (B) $n = 4, l = 2, m = -1, s = + 1/2$ (C) $n = 4, l = 1, m = 0, s = -1/2$ (D) $n = 5, l = 0, m = 0, s = -1/2$ 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise notation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO ₄ is half of its molar mass when it is converted to (A) Mn ₂ O ₃ (B) MnO ₂ (C) MnO ₄ (D) MnO ₄ ² 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO ₄ solution for complete oxidation. The percentage of oxalate (C ₂ O ₄ ²) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na ₂ CO ₃ solution and require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H ₂ SO ₄ of density 1.1 g/cm ³ is approximately		(A) $\lambda_3 = \lambda_1 + \lambda_2$	(B) $\lambda_3 = \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)}$	$(\mathbf{C}) \lambda_1 + \lambda_2 + \lambda_3 = 0$	(D) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
 63. The de Broglie equation describes the relationship of wavelength associated with the motion of an electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) distance from the nucleus 64. For which one of the following sets of quartum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = + 1/2 (B) n = 4, l = 2, m = -1, s = + 1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise rotation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻¹ (D) MnO₄² 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₃CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 400 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) 70. The	62.				glie wavelength. The velocity to
electron and (A) position of electron (B) mass of electron only (C) velocity and mass of electron (D) distance from the nucleus 64. For which one of the following sets of quantum numbers, an electron will have the highest energy? (A) $n = 3, l = 2, m = 1, s = + 1/2$ (B) $n = 4, l = 2, m = -1, s = + 1/2$ (C) $n = 4, l = 1, m = 0, s = -1/2$ (D) $n = 5, l = 0, m = 0, s = -1/2$ 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise totation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO ₄ is half of its molar mass when it is converted to (A) Mn ₂ O ₃ (B) MnO ₂ (C) MnO ₄ ⁻ (D) MnO ₄ ²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO ₄ solution for complete oxidation. The percentage of oxalate (C ₂ O ₄ ²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na ₂ CO ₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (D) 600 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y)				(C) v	(_)
 (C) velocity and mass of electron (D) distance from the nucleus 64. For which one of the following sets of manuum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = + 1/2 (B) n = 4, l = 2, m = -1, s = + 1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise notation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻¹ (D) MnO₄²⁻¹ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻¹) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately	63.	electron and			
 64. For which one of the following sets of quantum numbers, an electron will have the highest energy? (A) n = 3, l = 2, m = 1, s = + 1/2 (B) n = 4, l = 2, m = -1, s = + 1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise potation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻¹ (D) MnO₄²⁻¹ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻¹) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (C) 400 ml of (X) and 800 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately		· / 1			•
 (A) n = 3, l = 2, m = 1, s = + 1/2 (B) n = 4, l = 2, m = -1, s = + 1/2 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 5, l = 0, m = 0, s = -1/2 (E) n = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = -1/2 (E) n = 0, s = 0, s = -1/2 (E) n = 0, s = 0, s = -1/2 (E) n = 0, s = 0, s = -1/2 (E) n = 0, s = 0, s = -1/2 (E) n = 0, s = 0, s = 0, s = -1/2 (E) n = 0, s = 0, s	64				
 (C) n = 4, l = 1, m = 0, s = -1/2 (D) n = 5, l = 0, m = 0, s = - 1/2 (A) rotation of electron about it's own axis (B) clockwise and anticlockwise totation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 	U 7.				
 65. Spin of electron is (A) rotation of electron about it's own axis (B) clockwise and anticlockwise rotation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 					
 (B) clockwise and anticlockwise rotation of electron (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 	65.	Spin of electron is			
 (C) a quantum number which depends upon direction and speed of rotation of electron (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 					
 (D) an intrinsic characteristic of electron connected with its magnetic field 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 					tion of electron
 66. According to Schrodinger model nature of electron in an atom is as (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 				-	
 (A) particles only (B) wave only (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO ₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO ₄ solution for complete oxidation. The percentage of oxalate (C ₂ O ₄ ²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na ₂ CO ₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H ₂ SO ₄ of density 1.1 g/cm ³ is approximately		< / /		C	
 (C) both simultaneously (D) sometimes wave and sometimes particle 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 	66.	_	nger model nature of elec		
 67. The equivalent mass of MnSO₄ is half of its molar mass when it is converted to (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 		· · · ·	1	•	and comptimes nortials
 (A) Mn₂O₃ (B) MnO₂ (C) MnO₄⁻ (D) MnO₄²⁻ 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 		(C) both simulateous	ily	(D) sometimes wave a	and sometimes particle
 68. 0.3 g of a sample of an oxalate salt is dissolved in 100 cc of water. It required 90 cc of N/20 KMnO₄ solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 	67.	The equivalent mass of	of MnSO ₄ is half of its mo	olar mass when it is con-	verted to
 solution for complete oxidation. The percentage of oxalate (C₂O₄²⁻) in the given sample is (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 		(A) Mn ₂ O ₃	(B) MnO ₂	(C) MnO_4^-	(D) MnO_4^{2-}
 (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 	68.	0.3 g of a sample of a	n oxalate salt is dissolved	d in 100 cc of water. It	required 90 cc of N/20 KMnO ₄
 (A) 66 (B) 33 (C) 68 (D) 64 69. Two acids (X) and (Y) are titrated separately each time with 25 ml of 1 N Na₂CO₃ solution and required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 		solution for complete	oxidation. The percentage	e of oxalate $(C_2O_4^{2-})$ in	n the given sample is
 required 10 ml and 40 ml respectively for complete neutralization. The volumes of acids (X) and (Y) require to mix to produce one liter of 1 N acid solution are respectively, (A) 200 ml of (X) and 800 ml of (Y) (B) 800 ml of (X) and 200 ml of (Y) (C) 400 ml of (X) and 400 ml of (Y) (D) 600 ml of (X) and 400 ml of (Y) 70. The molality of 15% (wt./vol.) solution of H₂SO₄ of density 1.1 g/cm³ is approximately 		(A) 66	(B) 33	(C) 68	(D) 64
70. The molality of 15% (wt./vol.) solution of H_2SO_4 of density 1.1 g/cm ³ is approximately	69.	required 10 ml and 40 require to mix to produce (A) 200 ml of (X) and	0 ml respectively for com uce one liter of 1 N acid s 800 ml of (Y)	plete neutralization. Th solution are respectively (B) 800 ml of (X) and	e volumes of acids (X) and (Y) 7, 1 200 ml of (Y)
	70.	The molality of 15% ((A) 1.2	wt./vol.) solution of H ₂ So (B) 1.4	O ₄ of density 1.1 g/cm ³ (C) 1.8	is approximately (D) 1.6

MATHEMATICS

71.	If $x > 1$, the least value	of $2\log_{100} x^2 - \log_x 0.01$ is	5			
72.	(A) 2 If the domain of defini x) is	(B) 4 tion of $f(x)$ is the open inter		0, 1), the domain of de	(D) efinitio	
	(A) (0, e)	(B) $\left(1,\frac{\pi}{2}\right)$	(C)	$\left(-\infty,\frac{\pi}{2}\right)$	(D)	none of these
73.	For what value of 'a' the	he equation $ x -1 = a$ has	four s	solutions		
	(A) $0 \le a \le 1$	(B) $0 < a < 1$		a > 1		a ≥1
74.	If $f : (4, 8) \to (5, 9)$	is a function defined by f(x) =	$x + \frac{x}{4}$ where [·] st	ands	for greatest integer
	function then $f^{-1}(x)$					
	(A) does not exist	(B) is $1 + x$	(C)	is 1 – x	(D)	is x – 1
75.	If $f : R \to R$ and $f(x) =$ (A) $a \in R$	ax + sin x + a, then $f(x)$ is (B) $a \in R - [-1, 1]$			(D)	$a \in R - \{-1, 1\}$
76.		(b) $a \in \mathbf{R} - [-1, 1]$ (c) is periodic function for		$a \in \mathbf{K} - \{0\}$	(D)	$a \in \mathbf{K} - \{-1, 1\}$
77.	(A) one value of 'a' If $f(x) = min\{x, x^3\}$,	(B) two value of 'a'	(C)	infinite value of 'a'	(D)	no value of 'a'
//.	(A) f is discontinuous		(B)	f is not differential	ble at	2 points only
	(C) $f'(x) = 1 \forall x \in (-1, -1)$			f is odd		- F
	I x	$ -x(3^{1/x}+1) $				
78.	The function $f(x) = -$	$\frac{ -x(3^{1/x}+1)}{3^{1/x}-1}; x \neq 0 f(0) = 0$) is			
	 (A) discontinuous at x (B) continuous at x = 0 (C) both continuous & (D) differentiable but r) but not differentiable there differentiable at x = 0	•			
79.			f(v) -	$2\sin x$	ore ai	van hv
19.	Number of points of a	scontinuity of the function	$I(\mathbf{x}) =$	$\frac{Lt}{3^n + (2\cos x)^{2n}}$	are gr	ven by
	(A) 0	(B) 1		infinite	(D)	none of these
80.	If a f(x + 1) + b f $\left(\frac{1}{x+1}\right)$	$\left(\frac{1}{1}\right) = x, x \neq -1$, then f(x) is	equal	to		
	(A) $\frac{2a+b}{2(a^2-b^2)}$	(B) $\frac{a}{a^2-b^2}$	(C)	$\frac{a+2b}{(a^2-b^2)}$	(D)	$\frac{b}{a^2 - b^2}$
				(/		a -0
81.	If $f(x) = \underset{n \to \infty}{\text{Lt}} n \left(x^{1/n} - 1 \right)$), then for $x > 0$, $y > 0$, $f(x)$	y) is e	qual to		
	(A) $f(x)$. $f(y)$ 1	(B) $f(x) + f(y)$	(C)	f(x) - f(y)	(D)	none of these
82.	The value of $\lim_{x \to 3} \frac{1}{\sqrt{18-x}}$	$\frac{1}{-x^2} - \frac{1}{3}$, is				
	(A) $\frac{1}{9}$	(B) – 3	(C)	- 9	(D)	$\frac{1}{3}$
83.	If $\lim_{x \to 0} \frac{a + e^{1/x}}{1 + be^{1/x}} = 2$, the	en the value of a and b, are				
	(A) $a \in \mathbf{R}, b \in \mathbf{R}$	(B) $a = 2, b \in \mathbf{R}$	(C)	$a \in \mathbf{R}, b = 1/2$	(D)	none of these

84.	The value of $\lim_{x\to 0} \frac{1}{\sqrt{8x}}$	$\frac{x\sqrt{(x+y)^{2}-y^{2}}}{\overline{y+x^{2}}+\sqrt{8xy-x^{2}}}\right)^{3}, \text{ is}$				
	(A) $4\sqrt{2}$ y	(B) $2\sqrt{2}$ y	(C)	$\frac{1}{8\sqrt{2}y}$	(D)	none of these
85.	The value of $\lim_{x\to 0^+} \frac{2^{\sqrt{x}}}{2^{\sqrt{x}}}$	$\frac{-2^{1/\sqrt{x}}}{+2^{1/\sqrt{x}}}$, is		Q		
	(A) 1	(B) 0	(C)		(D)	dne
86.	If $\lim_{x \to \infty} \frac{x^a \sin x }{x^2 - 1}$ exists	s, then the value of a, is				
	(A) $0 < a < 1$	(B) a < 2	(C)	a > 1	(D)	$a \in \mathbf{R}$
87.	The value of $\lim_{x \to 1} (1 - x)$	$\tan\left(\frac{\pi x}{2}\right)$, is				
	(A) 0	(B) -1	(C)	1	(D)	none of these
88.	The value of $\lim_{x\to 0} (2-c)$	$(\cos x)^{\frac{1}{\ln(\cos x)}}$, is				
	(A) $\ln 2$	(B) e	(C)	e^{-1}	(D)	none of these
89.	If $\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)$	(B) e = e^2 , then the value of a ar	nd b, a	re		
	$(A) a \in \mathbf{R}, b \in \mathbf{R}$	(B) $a = 1, b \in \mathbb{R}$	(C)	$a \in \mathbf{R}, b = 2$	(D)	none of these
90.	The value of $\lim_{x \to \infty} \left(\frac{n}{(m)} \right)$	$\left(\frac{1}{n}\right)^n$				
	(A) em	(B) e m	(C)	$\frac{1}{\text{em}}$	(D)	none of these
91.	If $\lim_{n \to \infty} \left(an + \frac{n^2 + 2}{n - 2} \right) =$	b, then the values of a and	b, are			
		(B) $a = -1, b \in \mathbf{R}$			(D)	a = -1, b = 2
92.	The value of $\lim_{x \to 1^+} \frac{x \sin x}{x}$	$\frac{\{x\}}{-1}$ where $\{\cdot\}$ denotes frac	tional	part, is		
	$(A) 0 = \ln[x]$	(B) – 1	(C)		(D)	do not exist
93.	The value of $\lim_{x\to\infty} \frac{1}{x}$	where $[\cdot]$ denotes integral	part, i	S		
	(A) - 1	(B) 0	(C)	1	(D)	do not exist
94.	The value of $\lim_{x\to 2} \frac{\sin(e)}{\ln(e)}$	$\frac{x-1}{x-1}$, is				
	(A) – 2	(B) 1	(C)	– 1	(D)	0
95.	Let $f(x) = \frac{(128a + ax)}{(32 + bx)^{1/2}}$	$\frac{(B)}{5} - \frac{1}{2}$. If f is continuous at	x = a,	then the value of $\frac{a}{b}$,	is	
	$(A) \frac{8}{5} f(0)$	(B) $2^{8/5} f(0)$	(C)	2 ^{5/8}	(D)	none of these
96.	Let $f''(x)$ be continuo	us at $x = 0$, $f(0) \neq 0$ and $\lim_{x \to 0} f(0) \neq 0$	$\int_{0}^{1} \frac{2f(x)}{x}$	$\frac{(1-3af(2x)+b f(8x))}{\sin^2 x}$	exists	s, then the values of
	a and b, are (A) a = b = 1	(B) $a = 1, b = -1$	(C)	a = b = -1	(D)	a = - 1, b = 1

97.	Let $f(x) = bx^2 - a$, $x < -1$ = $ax^2 - bx - 2$, $x \ge -1$.
	If $f'(x)$ is continuous everywhere, then
98.	(A) $a = \pm 1, b = -3$ (B) $a = 1, b = 2$ (C) $a = 2, b = 3$ (D) $a = -1, b = -3$ Let f and g be two continuous and differentiable functions satisfying $f(x + y) = f(x) + f(y)$ for all x and
201	y and $f(x) = x^2 g(x)$, then $f(x)$ is equal to
	(A) $g'(x)$ (B) $g(0)$ (C) 0 (D) x
99.	Let $f(x) = [\sin^2 x], x \in [-\pi, \pi]$. Then the function is (A) discontinuous at 4 points (B) non-differentiable at 4 points
	(C) continuous everywhere (D) non-differentiable at 2 points
100.	Let $f(x) = x[1 + sin(\ln x^2)]$, where [·] denotes integral part. Then the function
	(A) is continuous at $x = 0$ (B) has a removable discontinuity at $x = 0$
101.	(C) has an irremovable discontinuity at $x = 0$ (D) is differentiable at $x = 0$ Let $f(x)$ and $g(x)$ be defined and differentiable for $x \ge x_0$. If $f(x_0) = g(x_0)$ and $f'(x) > g'(x)$ for
101.	Let $f(x)$ and $g(x)$ be defined and differentiate for $x = x_0$. If $f(x_0) = g(x_0)$ and $f(x) > g(x)$ for $x > x_0$, then
	(A) $f(x) < g(x)$ for every $x > x_0$ (B) $f(x) = g(x0 \text{ for some } x > x_0)$
107	(C) $f(x) > g(x)$ for every $x > x_0$ (D) none of these If $ y = 2x + 3y$, then the wrong statements are
102.	(A) $y(x)$ is strictly decreasing $\forall x \in \mathbf{R}$ (B) domain of $y(x)$ is $x \in \mathbf{R}$
	(C) $y(x)$ is continuous at differentiable $\forall x \in \mathbf{R}(D)$ none of these
103.	If $f(x) = \frac{x \ln(1 + \sin x)}{\ln(1 + \sin^2 x)}$, $x \neq 0$
	$= 0, \qquad x \neq 0$
	Then the function
	(A) has an irremovable discontinuity at $x = 0$
	 (B) has a removable discontinuity at x = 0 (C) is continuous but not differentiable at x = 0
	(D) is differentiable at $x = 0$
104.	Let $f(x) = \frac{a x^2 - 3x + 2 }{3x - 2 - x^2}$, $x < 1$
	$3x-2-x^2$, $x=1$
	$=\frac{\{x\}}{\sin(x-1)}, \qquad x>1$
	If f is continuous everywhere, then
105	(A) $a = -1, b = 1$ (B) $a = 1, b = 1$ (C) $a = -2, b = 1$ (D) $a = 2, b = -2$ The function $f(x) = (x^2 - 1)^{\frac{1}{2}} (x^2 $
105.	The function $f(x) = (x^2 - 1) x^2 - 3x + 2 + \cos x $ is not differentiable at
	(A) $x = 0, 1$ (B) $x = -1, 1$ (C) $x = 1$ (D) none of these