AIEEE MODEL EXAM

Time: 3hours

Maximum marks: 315

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

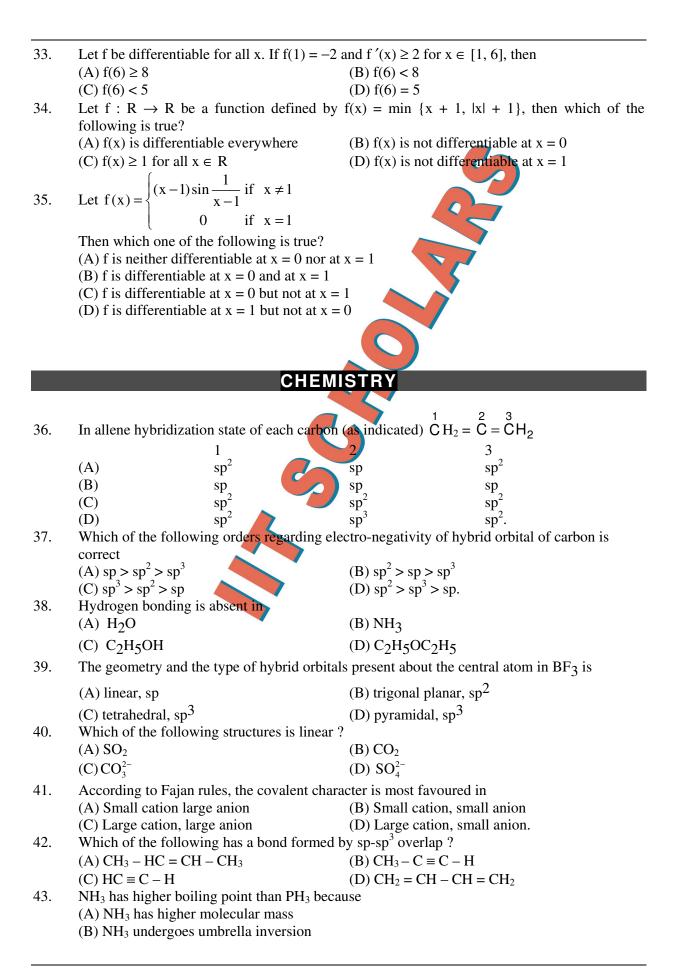
INSTRUCTIONS

A. General:

- 1. There are three sections in this paper consisting of Mathematic, Chemistry and Physics.
- 2. For each correct answer 3 marks will be awarded and for each incorrect answer, 1 mark will be deducted.

- 3. Mark only one correct answer out of four alternatives.
- 4. Use Blue/Bank ball point pen only for writing particulars/or any marking.
- 5. Use of calculator is not allowed.
- 6. Darken the circles in the space provided only.
- 7. Use of white fluid or any other material which damages the answer sheet, is not permitted.

MATHEMATICS


1.	Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$, $x \in$	R is
	(A) (l,∞)	(B) $\left(1, \frac{3}{2}\right)$
	$(\mathbf{C})\left(1,\frac{7}{3}\right]$	$(D)\left(1,\frac{7}{5}\right]$
2.	Domain of $f(x)$ satisfying $2^{x} + 2^{f(x)} = 2$ is (A) (-1, 1) (C) (- , 1)	(B) $(-, -1)$ (D) none of these
3.	If $f(x) = 3x$, $g(x) = \frac{x}{3}$, $h(x) = f(g(x))$ then $h(x) = f(g(x))$	(h(n times)) equal to
	(A) x^n (C) $3^n x$	(B) x (D) none of these
4.	The value of $f(x) = 3 \sin x - 4 \cos x + 5 \ \text{lies}$	
	(A) [0, 10] (C) [-5, 10]	(B) (0, 10) (D) none of these
5.	The period of the function $f(x) = \sin 2x + \tan x$ (A) 4π (C) π	n (x/2) is (B) 2π (D) $\pi/2$
6.	Total number of solution of $ x - 5 = 2$, is/a	are
	(A) 0 (C) 2	(B) 1 (D) 4
7.	$\lim_{x \to 0} (1 + \sin x)^{\cot x}$ is equal to	
	(A) e	(B) $\frac{1}{1}$
	(C) e^2	e (D) 1
8.	$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 - 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}}$ is equal to	
	(A) 0 (C) – 1	(B) 1(D) none of these
9.		$x + c = 0$, then $\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$ is equal to
	(A) $\frac{1}{2}(\alpha-\beta)^2$	$(B) - \frac{a^2}{2}(\alpha - \beta)^2$
	(C) 0	(D) $\frac{a^2}{2}(\alpha-\beta)^2$
10.	Function $f(x) = \sin x + \cos x + x $ is disco	ontinuous at
	(A) $x = 0$	(B) $x = \frac{\pi}{2}$
	(C) $x = \pi$	(D) no where

www.iitscholars.com

11	Eind the secles of the constant la sector ($\mathbf{x} = \begin{cases} \frac{1 - \cos 2x}{2x^2}, & x \neq 0\\ k, & x = 0 \end{cases}$ is continuous at $\mathbf{x} = 0$
11.	Find the value of the constant k, so that f()	$x_{1} = \begin{cases} 2x^{2} & \text{is continuous at } x = 0 \\ k & x = 0 \end{cases}$
	(A) 1	(B) - 1
	(C) 0	(D) none of these
12.	If $f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$ is a contrast of $x \neq \frac{\pi}{4}$.	ntinuous function, then $f(\frac{\pi}{4})$ is equal to
	(A) $-\frac{1}{2}$	(B) $\frac{1}{2}$
	(C) 1	(D) – 1
13.	If $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$, is continuous at x	
	(A) - 1	(B) 2
	(C) $\frac{1}{4}$	(D) π
14.	If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, find $\frac{dy}{dx}$	
	a o ax	b^2 x
	(A) $\frac{-b^2}{a^2} \frac{x}{y}$	(B) $\frac{d^2}{d^2} \frac{x}{y}$
	(C) $\frac{b^2}{a^2} \frac{y}{x}$	(D) none of these
15.	If $y = \cos^{-1}\left(\frac{2\cos x + 3\sin x}{\sqrt{13}}\right)$, find $\frac{dy}{dx}$	
	(A) 1	(B) 0
	(C) $\frac{1}{2}$	(D) none of these
16.	If $y = \log \left[x + \sqrt{x^2 + a^2} \right]$, find $\frac{dy}{dx}$	
	$(A) \xrightarrow{1}$	(B) $\frac{1}{\sqrt{2}}$
	(A) $\frac{1}{\sqrt{x^2 + a^2}}$	$\sqrt{x^2-a^2}$
	(C) $\frac{1}{\sqrt{a^2-x^2}}$	(D) none of these
17.	The slope of the tangent to the circle $x^2 + y$	-
	(A) 1 (C) 2	(B) - 1
18.	(C) 0 The sum of the squares of intercents on c	(D) 2 axes made by a tangent at any point on the curve
10.	$x^{2/3} + y^{2/3} = a^{2/3}$ is	axes made by a tangent at any point on the curve
	(A) a	(B) 2a
10	$(C) a^{2}$	(D) $2a^2$
19.	For all real values of x, increasing function (A) x^{-1}	$(B) x^2$
	$(\mathbf{C}) \mathbf{x}^3$	$(D) x^4$
20.	Function $f(x) = x^3 - 27x + 5$ is monotonic	ncreasing when
	(A) $x < -3$	(B) $ x > 3$
	(C) $x \le -3$	(D) $ \mathbf{x} \ge 3$

21.		on $f(x) = x^2 + ax + 1$ is an increasing function on
	[1, 2] is (A) $(-2, \infty)$	(B) [−4, ∞)
	(C) $[-\infty, -2)$	(D) $(-\infty, 2]$
22.	If $x > 0$, $xy = 1$, then minimum value of $x + 1$	
	(A) 2	(B) - 2
	(C) 1	(D) – 1
23.	If A > 0, B > 0 and A + B = $\pi/3$, then maxim	
	(A) $-\frac{1}{3}$	(B) $\frac{2}{3}$ (D) $-\frac{2}{3}$
	(C) $\frac{1}{3}$	(D) $-\frac{2}{3}$
24.		s on the axes cut off by the tangent to the curve
	$x^{\frac{1}{3}} + y^{\frac{1}{3}} = a^{\frac{1}{3}} (a > 0)$ at $\left(\frac{a}{8}, \frac{a}{8}\right)$ is 2 then a ha	is the value
	(A) 1	(B) 2
25	(C) 4 Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and m(b) is	(D, 8)
25.	Let $I(x) = (1 + b)x + 2bx + 1$ and $II(b)$ is As b varies, the range of $II(b)$ is	
	(A) [0, 1]	(B) $\left[0,\frac{1}{2}\right]$
	$(C)\left[\frac{1}{2},1\right]$	(D) (0, 1]
26.		and non differentiability of $f(x) = x^2 - 4 x $
	respectively, is	$(\mathbf{P}) 2 2 2 2$
	(A) 2, 3, 2 (C) 2, 3, 3	(B) 3, 3, 2 (D) 3, 2, 3
27.	The equation of the horizontal tangent to th	
	(A) $y = -2$	(B) $y = -1$
20	(C) $y = 2$	(D) $y = 1$
28.	The length of the subtangent to the ellipse x (A) a	(B) b
	(C) $\frac{b}{\sqrt{2}}$	(D) $\frac{a}{\sqrt{2}}$
29.	If the function $f(x) = x^2 + \alpha/x$ has a local m	inimum at $x = 2$, then the value of α is
	(A) 8	(B) 18
30.	(C) 16 A curve passes through the point (2, 0) and	(D) 12 the slope of the tangent at any point (x, y) is
50.	$x^2 - 2x$ for all value of x. The point of maximum for the point of	
	(A) (0, 4/3)	(B) (0, 2/3)
	(C) (1, 2/3)	(D) (2, 4/3)
31.	The set of points where $f(x) = \frac{x}{1+ x }$ is different functions.	ferentiable is
	$(A) (-\infty, -1) \cup (-1, \infty)$	(B) (−∞, ∞)
20	(C) $(0, \infty)$	(D) $(-\infty, 0) \cup (0, \infty)$
32.	If f is a real-valued differentiable function s $f(0) = 0$ then $f(1)$ equals	atisfying $ f(x) - f(y) \le (x - y)^2$, $x, y \in \mathbb{R}$ and
	(A) 1	(B) 2
	(C) 0	(D) –1

www.iitscholars.com

11	(C) NH_3 molecules form H-bonds with one (D) NH_3 contains ionic bonds while PH_3 do The species having highest hand order is	
44.	The species having highest bond order is $(A) O_2$	(B) O_2^-
		(D) O_2^{2-}
45.	(C) O_2^+	
43.	Carbon dioxide is isostructural with which (A) HgCl ₂	(B) H_2O
	(C) SnCl_2	$(D) NO_2^-$
46.	Combination of two AO's lead to the forma	ation of
	(A) two MO's	(B) one MO
	(C) three MO's	(D) four MO's
47.	AlCl ₃ is covalent while AlF ₃ is ionic. This α	
	(A) the valence-bond theory	(B) Fajans' rules
48.	(C) none of these Orthonitrophenol is steam volatile but para	(D) hydration energy
40.	(A) orthonitrophenol has intramolecular hydrox	
	intermolecular hydrogen bonding.	
	(B) both ortho and paranitrophenol have int	
	(C) orthonitrophenol has intermolecular hy	lrogen bonding and paranitrophenol has
	intramolecular hydrogen bonding.	rthenitranhanal
49.	(D) Van der Waals forces are dominant in e How many sigma and pi bonds are present	
17.	(A)Nine σ and nine π	(B) Five π and nine σ
	(C) Nine σ and seven π	(D) Eight σ and eight π
50.		als is 105°. The percentage s-character of hybrid
	orbital is between	$(\mathbf{D}) = 0 + 1 0 0$
	(A) $50 - 55\%$ (C) $22 - 23\%$	(B) 9 – 12% (D) 11 – 12%
51.	The hydrogen bond is strongest in	(D) 11 - 12 %
	(A) O – HS	(B) S – HO
	(C) F – HF	(D) F – HO
52.	The maximum number of H-bonds in which	
	(A) 1 (C) 2	(B) 3 (D) 4
53.	The hydrogen line spectrum provides evide	
00.	(A) Heisenberg Uncertainty Principle	(B) wave like properties of light
	(C) Diatomic nature of H_2	(D) quantized nature of atomic energy states.
54.	The ratio of energy of the electron in groun state of Be^{+3} is	d state of hydrogen to the electron in first excited
	(A) 4:1	(B) 1:4
	(C) 1:8	(D) 8:1
55.	the de-Broglie's wavelength?	d state. It has a total energy of -3.4 ev , calculate
	(A) 66.5Å (C) 60.6Å	(B) 6.66Å(D) 6.06Å
56.	The orbital angular momentum of an electr	
	(A) 1 h	
	(A) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	(B) zero
	(C) $\frac{h}{2\pi}$	(D) $\sqrt{2} \cdot \frac{h}{2\pi}$
	2π	2π

57.	The value of Bohr radius of hydroger	n atom is	
	(A) 0.529×10^{-8} cm	(B) 0.529×10^{-10} cm	
	(C) 0.529×10^{-12} cm	(D) 0.529×10^{-6} cm	
58.		e correct set of the four quantum numbers of 4d–	
	electrons ?	1	
	(1) (2) (2) (1)		
	(A) 4, 3, 2, $+\frac{1}{2}$	(B) 4, 2, 1, 0	
	_	1	
	(C) 4, 3, -2, $\frac{1}{2}$	(B) 4, 2, 1, 0 (D) 4, 2, 1, $-\frac{1}{2}$	
59.	Which of the following has maximum		
57.	(A) Zn	(B) Fe^{2+}	
	(C) Ni^{3+}	$(D) Cu^+$	
60.		d to react with excess of AgNO ₃ to produce 4.31 gram	
	of AgCl.		
	(A)0.030	(B) 0.015	
	(C) 0.045	(D) 0.060	
61.	1.60g of a metal were dissolved in H	NO_3 to prepare its nitrate. The nitrate on strong heating	
	gives 2g oxide. The equivalent weigh	it of metal is	
	(A)16	(B) 32	
	(C) 48	(D) 12	
62.	A metal oxide has 40% oxygen. The		
	(A) 12	(B) 16 (D) 48	
	(C) 24		
63.		chloride were dissolved in water to produce a 500 mL	
	solution. The molarity of the Cl ⁻ is		
	(A)0.06M	(B) 0.09M	
61	(C) 0.12M Ratio of radii of 2^{nd} and 1^{st} Bohr orbi	(D) 0.80M	
64.	(A) 2	(B) 4	
	$(\mathbf{R})^2$ (C) 3	(D) 4 (D) 5	
65.	Which bond is most polar	(\mathbf{D}) 5	
05.	(A) $Cl - F$	(B) Br – F	
	(C) I – F	(D) $F - F$	
66.		ptained by mixing 100 ml of 0.1 HCl + 50 ml of 0.25 N	
	NaOH		
	(A) 0.0167	(B) 1	
	(C) 2	(D) 3	
67.	The wt. of H ₂ SO ₄ in 1200 ml of a sol	ution of 0.2 N strength is	
	(A) 10 gm	(B) 11.76 gm	
	(C) 5 gm	(D) 1 gm	
68.		are needed to dissolve 0.5 gm of copper II carbonate	
	(Mol. wt. of $CuCO_3 = 123.5$)		
	(A) 8.097 ml	(B) 1 ml	
	(C) 7 ml	(D) 2 ml	
69.	The no. of oxalic acid molecules in 1		
	(A) 6.023×10	(B) 6.023×10^{20}	
	(C) 6.023×10^{23}	(D) none	
70.	100 mL of N/5 NaOH will neutralize		
	(A) 20 ml 1 N HCl	(B) 10 ml 1 N HCl	
	(C) both	(D) None of these	

PHYSICS

71.		ery high tower then the distance covered in the fifth		
	second of its fall is $(g = 10 \text{ m/s}^2)$ (A) 25 m	(B) 50 m		
	(C) 45 m	(D) 15 m		
72.		the horizontal such that the vertical component of its		
	(A) 200 m/s	is T. Its velocity at t=1/2 has a magnitude of (B) 300 m/s		
	(C) $80\sqrt{3}$ m/s	(D) $40\sqrt{2}$ m/s		
73.	A ball of mass m is attached to one end			
	end of which is hinged. What minimum velocity u should be imparted to the $\frac{1}{4}$			
	ball downwards, so that it can complete the $\sqrt{1}$			
	(A) \sqrt{gl}	(B) $\sqrt{5gl}$		
- 4	(C) $\sqrt{3gl}$			
74.	e e	rection, after 5 seconds it was found moving with 6 nitude of acceleration acting on the car in this time		
	interval is	induce of acceleration acting on the car in this time		
	(A) 1.5 m/s^2	(B) 0.6 m/s^2		
75.	(C) 2 m/s^2	(D) 2.8 m/s^2		
13.		If the coefficient of friction is μ , then the maximum h can overhang from the edge of the table without		
	sliding down is			
	(A) $\frac{1}{\mu}l$	$(\mathbf{B}) \stackrel{1}{\longrightarrow} l$		
	$(\mathbf{A}) = \frac{1}{\mu}$	(B) $\frac{1}{\mu+1} l$		
	(C) $\frac{\mu}{\mu+1} l$	(D) $\frac{\mu}{\mu-1} l$		
76.	A man pushes a wall and fails to displace	it. He does		
	(A) Negative work	(B) Positive but not maximum work		
77	(C) No work at all	(D) Maximum work		
77.		A uniform chain has mass M and length L respectively. It is lying on a smooth horizontal		
	table with half of its length hanging vertically down. The work done in pulling the chain up the table is			
	the table is	cally down. The work done in pulling the chain up		
		cally down. The work done in pulling the chain up (B) MgL/4		
70	the table is (A) MgL/2 (C) MgL/8	(B) MgL/4 (D) MgL/16		
78.	the table is(A) MgL/2(C) MgL/8A particle moves under the effect of a formation of the effect of the effe	(B) MgL/4		
78.	the table is (A) MgL/2 (C) MgL/8	(B) MgL/4 (D) MgL/16		
78.	the table is(A) MgL/2(C) MgL/8A particle moves under the effect of a forprocess is	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x_1 . The work done in the		
78. 79.	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a form process is (A) cx_1^2 (C) cx_1^3	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero		
	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a form process is (A) cx_1^2 (C) cx_1^3	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$		
	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a for- process is (A) cx_1^2 (C) cx_1^3 A force of $(3\hat{i} + 4\hat{j})N$ acts on a body and force is (A) zero	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero displaced it by $(3\hat{i} + 4\hat{j})m$. The work done by the (B) 12 J		
79.	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a for- process is (A) cx_1^2 (C) cx_1^3 A force of $(3\hat{i} + 4\hat{j})N$ acts on a body and force is (A) zero (C) 16 J	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero displaced it by $(3\hat{i} + 4\hat{j})m$. The work done by the (B) 12 J (D) 25 J		
	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a form process is (A) cx_1^2 (C) cx_1^3 A force of $(3\hat{i} + 4\hat{j})N$ acts on a body and force is (A) zero (C) 16 J A person holds a bucket of weight 60 N. I	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero displaced it by $(3\hat{i} + 4\hat{j})m$. The work done by the (B) 12 J (D) 25 J He walks 7 m along the horizontal path and then		
79.	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a for- process is (A) cx_1^2 (C) cx_1^3 A force of $(3\hat{i} + 4\hat{j})N$ acts on a body and force is (A) zero (C) 16 J A person holds a bucket of weight 60 N. I climbs up a vertical distance of 5 m. The (A) 300 N-m	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero displaced it by $(3\hat{i} + 4\hat{j})m$. The work done by the (B) 12 J (D) 25 J He walks 7 m along the horizontal path and then work done by the man is (B) 420 N-m		
79.	the table is (A) MgL/2 (C) MgL/8 A particle moves under the effect of a for- process is (A) cx_1^2 (C) cx_1^3 A force of $(3\hat{i} + 4\hat{j})N$ acts on a body and force is (A) zero (C) 16 J A person holds a bucket of weight 60 N. I climbs up a vertical distance of 5 m. The	(B) MgL/4 (D) MgL/16 ce F = cx from x = 0 to x = x ₁ . The work done in the (B) $\frac{1}{2}cx_1^2$ (D) zero displaced it by $(3\hat{i} + 4\hat{j})m$. The work done by the (B) 12 J (D) 25 J He walks 7 m along the horizontal path and then work done by the man is		

www.iitscholars.com

81.	Under the action of a force, a 2 kg body moves su	_		
	given by $x = \frac{t^3}{3}$, where x is in metres and t in seconds. The work done by the force in the first			
	wo seconds is			
	(A) 1.6 J (B)			
82.		1600 J d (B) are moving and have some kinetic		
62.	Two trucks, one loaded (A) and the other unloaded (B) are moving and have same kinetic energy. The mass of A is double that of B. Brakes applied to both and are brought to rest. If			
	distance covered by A before coming to rest is s_1			
		$s_1 = 2s_2$		
02		$s_1 = 4s_2$		
83.	A particle of mass M moves in a circle of radius F when it completes one circle is	with a constant speed v. The work done		
	(A) $\frac{Mv^2}{R} \times 2\pi R$ (B)	$\frac{1}{2}$ Mv ²		
	\mathbf{K}	2		
	(C) $\frac{Mv^2}{R} \times \pi R$ (D) 2	ero		
84.	The work done by external force on a body equals	the change in		
		potential energy only		
~ ~	(C) thermal energy only	(D) total energy		
85.	If we throw a body upwards with velocity of 4 m/			
	reduce to half of the initial value ? Take $g = 10 \text{ m}$			
	(A) 4 m (C) 1 m (D) (C)			
86.	A body moves a distance of 10 m along a straight			
00.	work done is 25 J, then angle between the force at			
	(A) 30° (B) 4	•		
	(C) 60° (D)			
87.	A body of mass 15 kg moving with a velocity of 1	10 ms^{-1} is brought to rest. The work done by		
	the brake is $(A) - 250 J$ (B) -	- 500 J		
		- 1000 J		
88.	Two springs have their force constants as K_1 and L_2			
	are stretched by the same amount of length, will be			
		greater for K ₁		
20	-	given data is incomplete		
89.	Given that the displacement of the body in metre $x = 2t^4 + 5$	is a function of time as follows:		
	The mass of the body is 2 kg. What is the increase in its kinetic energy one second after the			
	start of motion ?			
	(A) 8 J (C) 32 J (D) 0			
90.	A particle moved from position $\vec{r}_1 = 3\hat{i} + 2\hat{j} - 6\hat{k}$ to	position $\vec{r}_2 = 14\hat{i} + 13\hat{j} + 9\hat{k}$ under the action		
	of a force $(4\hat{i} + \hat{j} + 3\hat{k})$ Newton. Find the work done	of a force $(4\hat{i} + \hat{j} + 3\hat{k})$ Newton. Find the work done		
	(A) 10 J (B) 1			
	(C) 0.01 J (D)	IJ		

91.	Velocity-time graph of a particle moving in figure. Mass of the particle is 2 kg. acting on the particle in time interval betw	Work done by all the forces 10 een t = 0 to t = 10 s is 10
	(A) 300 J (C) 400 J	(B) -300 J (D) -400 J $-20 \cdots$
92.	A long spring is stretched by 2 cm; its po cm, the potential energy stored in it will be (A) U/25 (C) 5U	tential energy is U. If the spring is stretched by 10 (B) U/5 (D) 25 U
93.	under the action of a constant force, is dire	
	(A) \sqrt{m}	(B) independent of <i>m</i>
	(C) $\frac{1}{\sqrt{m}}$	(D) <i>m</i>
94.	In the figure shown if the value of the force the tension in the connecting string will be are smooth). $(g = 10 \text{ m/s}^2)$ (A) 1.2 N	(all surface $3kg$ (B) 4N 30°
95.	(C) 5 N Find the maximum value of F so that the c question ($g = 10 \text{ m/s}^2$) (A) 10N (C) 15	(D) 6.3 N onnecting string does not become slack in above (B) 6N (D) 4.6 N
96.	The minimum value of the force F so that figure start to slide. (A) 50 N	(P) 20 N $5kg \rightarrow 20N$
07	(C) 10 N	(D) 25N μ = 0.0
97.		ving with a velocity 'u' in a distance 's'. The force ass moving with double the velocity in the same
	(A) 2F (C) 6F	(B) 4F (D) 8F
98.	 (c) of The principle of conservation of energy in (A) the total mechanical energy is conserved (B) the total kinetic energy is conserved (C) the total potential energy is conserved (D) sum of all types of energies is conserved 	aplies that yed
99.	A particle is projected with kinetic energy highest point is	E at 30° to the horizontal. The kinetic energy at the
		(B) $\frac{\mathrm{E}}{2}$
	(A) $\frac{3E}{4}$ (C) $\frac{\sqrt{3E}}{2}$	(D) $\frac{E}{4}$

100. A particle is released from a height H above the ground level. At a certain height its kinetic energy is two times its potential energy as measured w.r.t. the ground level. Height and speed of particle at that instant are

(A)
$$\frac{H}{3} \cdot \sqrt{\frac{3gH}{3}}$$

(B) $\frac{H}{3} \cdot 2\sqrt{\frac{gH}{3}}$
(C) $\frac{2H}{3} \cdot \sqrt{\frac{2gH}{3}}$
(D) $\frac{H}{3} \cdot \sqrt{2gH}$

101. A 5 kg block is kept on a horizontal plank at rest. At time t = 0, the plank starts moving with a constant acceleration of 1 m/s². The coefficient of friction between the block and the plank is 0.2. The work done by the force of friction on the block in the fixed reference frame in 10s is

(C) + 500 J

(B)
$$-250 \text{ J}$$

(D) -500 J

- 102. A particle of mass m starts from rest and moves in a circular path of radius R with a uniform angular acceleration α rad/s². The kinetic energy of the particle after n revolutions is (A) $\alpha \alpha m R^2$ (B) $2\pi \alpha m R^2$
 - (A) $\operatorname{Hom}(\mathbf{R})$ (C) $(1/2)\operatorname{mn}(\mathbf{R})^2$

(D) $mn\alpha R^2$

103. A body of mass m is moving in a circle of radius r with a constant speed v. The force on the body is equal to mv²/r and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle

(A)
$$\frac{mv^2}{\pi r^2}$$

(C) $\frac{mv^2}{r^2}$
(D) $\frac{\pi r^2}{mv^2}$

104. A force $F = (5\hat{i} + 3\hat{j})$ Newton is applied over a particle which displaces it from its origin to the point $r = (2\hat{i} - 1\hat{j})$ metres. The work done on the particle is

('	
(A) -7 joules		(B) $+ 13$ joules
(C) $+7$ joules		(D) + 11 joules

105. A mass of M kg is suspended by a weightless string. The horizontal force that is required to displace it until the string makes an angle of 45° with the initial vertical direction is

(A)
$$Mg(\sqrt{2}-1)$$
 (B) $Mg(\sqrt{2}+1)$
(C) $Mg\sqrt{2}$ (D) $\frac{Mg}{\sqrt{2}}$