AIEEE - GOMMON PBAGTIGE TEST-3

Answers

1. (A)
2. (B)
3. (C)
4. (A)
5. (B)
6. (B)
7. (C)
8. (D)
9. (A)
10. (C)
11. (A)
12. (B)
13. (C)
14. (B)
15. (A)
16. (B)
17. (C)
18. (C)
19. (C)
20. (C)
21. (A)
22. (D)
23. (C)
24. (C)
25. (C)
26. (A)
27. (B)
28. (A)
29. (D)
30. (B)
31. (A)
32. (D)
33. (A)
34. (B)
35. (A)
36. (A)
37. (A)
38. (B)
39. (D)
40. (C)
41. (B)
42. (A)
43. (D)

44
45.

46
47.
48.
49. (B)
50. (D)
51. (B)
52. (B)
53. (D)
54. (D)
55. (B)
56. (C)
57. (A)
58. (C)
59. (B)
60. (D)
61. (A)
62. (A)
63. (A)
64. (D)
65. (A)
66. (C)
67. (A)
68. (A)
69. (B)
70. (A)
71. (B)
72. (C)
73. (C)
74. (B)
75. (A)
76. (B)
77. (C)
78. (B)
79. (D)
80. (A)
81. (D)
82. (C)
83. (C)
84. (B)
85. (A)
86. (B)
87. (C)
88. (C)
89. (C)
90. (B)
91. (D)
92. (C)
93. (C)
94. (A)
95. (D)
96. (D)
97. (B)
98. (A)
99. (B)
100. (C)
101. (C)
102. (B)
103. (A)
104. (A)
105. (B)

HINTS AND SOLUTION

MATHEMATICS

1. (a)
$y \frac{d x}{d y}=2 x \Rightarrow 2 \frac{d y}{y}=\frac{d x}{x} \Rightarrow \ell n y^{2}=\ell n x-\ell n c \Rightarrow x=c y^{2}$
2. (b)
$y-x \frac{d y}{d x}=2 x y^{2} \Rightarrow \frac{y d x-x d y}{y^{2}}=2 x d x \Rightarrow \int d(x / y)=x^{2}+c$
$\Rightarrow x=x^{2} y+c y$
3. (c)
$\frac{d y}{d x}=\frac{x}{y} \Rightarrow x^{2}-y^{2}=c$
\Rightarrow a rectangular hyperbola.
4. (a)
$\frac{d y}{d x}=\frac{2 y}{x} \Rightarrow \frac{d y}{y}=2 \frac{d x}{x}$
$\Rightarrow \ell n y=\ell n x^{2}+\ell n c$
$\Rightarrow \mathrm{y}=\mathrm{cx}^{2}$, as curve basses through $(1,1)$,
5. (b)
$\left(1+y^{2}\right) d x-\left(\tan ^{-1} y-x\right) d y=0$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}+\frac{\mathrm{x}}{1+\mathrm{y}^{2}}=\frac{\tan ^{-1} \mathrm{y}}{1+\mathrm{y}^{2}}$
Comparing with $\frac{d x}{d y}+P x=Q, \int P d y=\int \frac{d y}{1+y^{2}}=\tan ^{-1} y$
Integrating factor $=e^{\int \text { Pdy }}=$
6. (b)

$$
\begin{align*}
\frac{d y}{d x} & =1+x+y+x y \\
& =(1+x)(1+y) \\
\Rightarrow & \int \frac{d y}{(1+y)}=\int(1+x) d x \Rightarrow \log (1+y)=\left(\frac{x^{2}}{2}+x\right)+c \tag{i}
\end{align*}
$$

Put $\mathrm{x}=-1$ and $\mathrm{y}=0$ as $\mathrm{y}(-1)=0$ in (i)
$\log 1=\frac{1}{2}-1+\mathrm{c}$ or $\mathrm{c}=\frac{1}{2}$
Now (i) $\Rightarrow \log (1+y)=\frac{x^{2}}{2}+x+\frac{1}{2}$
$\Rightarrow \mathrm{y}=\mathrm{e}^{(\mathrm{x}+1)^{2} / 2}-1$.
7. (c)
$\frac{d y}{d x}-k y=0$
(i) $\Rightarrow \int \frac{d y}{y}=\int k d x \Rightarrow \log y=k x+\log c \Rightarrow y=c e^{k x}$.
$\Rightarrow \mathrm{y}=\mathrm{e}^{\mathrm{kx}}$, due to given condition

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{k x} \Rightarrow \lim _{x \rightarrow \infty} e^{k x}=0
$$

It is true only if $\mathrm{k}<0$.
8. (d)
$x d y-y d x=0$
$\Rightarrow \int \frac{\mathrm{dy}}{\mathrm{y}}-\int \frac{\mathrm{dx}}{\mathrm{x}}=0$
$\Rightarrow \log y-\log x=\log c \Rightarrow \log \left(\frac{y}{x}\right)=\log c \Rightarrow \frac{y}{x}=c \Rightarrow y=c x$
\Rightarrow straight line through origin.
9. (a)

Length of normal $=y \sec \psi=y \sqrt{1+\tan ^{2} \psi}$

$$
=\mathrm{y}\left[1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right]=\mathrm{k} \text {, given }
$$

This $\Rightarrow \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}= \pm \sqrt{\mathrm{k}^{2}-\mathrm{y}^{2}}$.
10. (c)

Surface area of the rain drop is

$$
\mathrm{S}=4 \pi \mathrm{r}^{2}
$$

And $\mathrm{r}=3 \mathrm{~mm}, \mathrm{r}=2 \mathrm{~mm}$.
Volume of rain drop is $V=\frac{4}{3} \pi r^{3}$
Giving $\frac{\mathrm{dV}}{\mathrm{dt}} \infty \mathrm{S}$
i.e. $\frac{d V}{d t}=K S$ where K is constant
or $d V=K$ S dt
Therefore from (i) and (ii), $4 \pi r^{2} d r=K 4 \pi r^{2} d t$
i.e., $\quad d r=K d t$

Integrating both sides, we get
$\mathrm{r}=\mathrm{Kt}+\mathrm{c}, \mathrm{c}$ is constant of integration.
At $\mathrm{r}=3, \mathrm{t}=0$ so that $\mathrm{c}=3$ and at $\mathrm{r}=2, \mathrm{t}=1$, so that

$$
2=k \times 1+3 \Rightarrow k=-1
$$

Here $\mathrm{r}=3-\mathrm{t}$.
11. (a)

2(Area of $\Delta \mathrm{ABC}$)

$$
\begin{aligned}
& =\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\left|\begin{array}{ccc}
6 & 3 & 1 \\
-3 & 5 & 1 \\
4 & -2 & 1
\end{array}\right|=49 \\
& \text { 2.(Area of } \Delta D B C)=\left|\begin{array}{ccc}
x & 3 x & 1 \\
-3 & 5 & 1 \\
4 & -2 & 1
\end{array}\right|=28 x-14
\end{aligned}
$$

It is given $\frac{\text { Area of } \Delta \mathrm{DBC}}{\text { Area of } \Delta \mathrm{ABC}}=\frac{1}{2} \Rightarrow \frac{(28 \mathrm{x}-14) / 2}{49 / 2}=\frac{1}{2}$
$\Rightarrow \frac{28 \mathrm{x}-14}{49}=\frac{1}{2} \Rightarrow \mathrm{x}=\frac{11}{8}$.
12. (b)
$\mathrm{O}(0,0), \mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(\mathrm{c}, \mathrm{d}), \overrightarrow{\mathrm{QA}}=\mathbf{i} \mathrm{a}+\mathbf{j} \mathrm{b}, \overrightarrow{\mathrm{OB}}=\mathbf{i c}+\mathbf{j} \mathrm{d}$
$\cos \theta=\frac{\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}}{(\mathrm{OA})(\mathrm{OB})}=\frac{(\mathbf{i a}+\mathbf{j b}) \cdot(\mathbf{i} \mathbf{c}+\mathbf{j d})}{\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)} \sqrt{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)}}$
$=\frac{\mathrm{ac}+\mathrm{bd}}{\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)} \sqrt{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)}}$.
13. (c)
$\overrightarrow{\mathrm{OQ}}_{1} \cdot \overrightarrow{\mathrm{OQ}}_{2}=\left(\mathrm{OQ}_{1}\right)\left(\mathrm{OQ}_{2}\right) \cos \theta$
$\overrightarrow{\mathrm{OQ}}_{1}=\mathrm{x}_{1} \mathbf{i}+\mathbf{j} \mathrm{y}_{1}, \overrightarrow{\mathrm{OQ}}_{2}=\mathbf{i x} \mathbf{x}_{2}+\mathbf{j} \mathbf{y}_{2}$
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}=\left(\mathrm{OQ}_{1}\right)\left(\mathrm{OQ}_{2}\right) \cos \theta$
14. (b)

Equation of line BC is $4 x+y=7$
And so equation of $A D$ is $x-3 y=c$
But it passes through $\mathrm{A}(0,0) \quad \therefore \mathrm{c}=0$.

Equation of AD is $x-4 y=0$

Since $A C: 3 x-y=0$. and so BE: $x+3 y+1=0$
Solving (i) and (ii), we get orthocenter $\left(-\frac{4}{7}, \frac{-1}{7}\right)$.
15. (a)

Equation of line through first tyyo points is
$y-0=\frac{b-0}{-a-0}(x-0) \Rightarrow b x-a y=0$
(i) is satisfied by (a, b) and $\left(\mathrm{a}^{2}\right.$, ab) both. Hence all points are collinear.
16. (b)

Slope of AD. slope of $\mathrm{BE}=-1$
$\Rightarrow\left(-\frac{2 \mathrm{~b}}{\mathrm{a}}\right) \times\left(\frac{\mathrm{b}}{\mathrm{a}}\right)=-1 \Rightarrow 2 \mathrm{~b}^{2}=\mathrm{a}^{2}$.
17. (c)

Slope of line AC is $m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-1}{x-3}$
Slope of line $A B$ is $m_{2}=\frac{5-1}{6-3}=\frac{4}{3}$
$\mathrm{AB} \perp \mathrm{AC} \Rightarrow \mathrm{m}_{1} \mathrm{~m}_{2}=-1 \Rightarrow\left(\frac{\mathrm{y}-1}{\mathrm{x}-3}\right)\left(\frac{4}{3}\right)=-1$
$\Rightarrow 3 x+4 y=13$
Area of $\triangle \mathrm{ABC}=7$

\Rightarrow solving (i) with above equations, we get 2 points.
18. (c)

Old (x, y), new $=(\mathrm{X}, \mathrm{Y}),(\mathrm{h}, \mathrm{k})=(1,-2)$
$\mathrm{x}=\mathrm{X}+\mathrm{h}, \mathrm{y}=\mathrm{Y}+\mathrm{k} \Rightarrow 4=\mathrm{X}+1,5=\mathrm{Y}-2 \Rightarrow \mathrm{X}=3, \mathrm{Y}=7$
19. (c)

Mid point of diagonal PR is
$\left(\frac{1+5}{2}, \frac{2+7}{2}\right)=\left(3, \frac{9}{2}\right)$

This $\Rightarrow\left(3, \frac{9}{2}\right)=\left(\frac{a+4}{2}, \frac{\mathrm{~b}+6}{2}\right) \Rightarrow \frac{\mathrm{a}+4}{2}=3, \frac{\mathrm{~b}+6}{2}=\frac{9}{2}$
$\Rightarrow \mathrm{a}=2, \mathrm{~b}=3$.
20. (c)

Middle point M of diagonal AC is
$\mathrm{M}\left(\frac{3+1}{2}, \frac{4-1}{2}\right)=\mathrm{M}\left(2, \frac{3}{2}\right)$.

Now B and D are found as in option (c)
21. (a)
$\frac{d y}{d x}+P y=Q, \frac{d y}{d x}+\frac{1}{x} y=3 x$
Integrating factor $=\mathrm{e}^{\int \operatorname{Pdx}}=\mathrm{e}^{\int \frac{1}{\mathrm{x}} \mathrm{dx}}=\mathrm{e}^{\int \frac{1}{\mathrm{x}} \mathrm{dx}}=\mathrm{e}^{\log \mathrm{x}}=\mathrm{x}$.
22. (d)
$a x^{2}+b y^{2}=1$
Diff. this w.r.t. $\mathrm{x}, 2 \mathrm{ax}+2 \mathrm{byy}_{1}=0 \Rightarrow \mathrm{ax}+\mathrm{byy}_{1}=0$
Again diff. w.r.t x , we get
$\mathrm{a}+\mathrm{by}_{1}^{2}+\mathrm{byy}_{2}=0 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}+\left(\mathrm{y}_{1}^{2}+\mathrm{yy}_{2}\right)=0$, using (ii) we get
$-\left(\frac{\mathrm{yy}_{1}}{\mathrm{x}}\right)+\left(\mathrm{y}_{1}^{2}+\mathrm{yy}_{2}\right)=0 \Rightarrow\left(\mathrm{y}_{1}^{2}+\mathrm{yy}_{2}\right) \mathrm{x}-\mathrm{yy}_{1}=0$
$\Rightarrow x^{\prime \prime} y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y^{\prime}=0$.
23. (c)
$y d x-x d y=x^{2} y d x \Rightarrow\left(y-x^{2} y\right) d x=x d y$
$\Rightarrow \int\left(\frac{1-x^{2}}{x}\right) d x=\int \frac{d y}{y}$
$\Rightarrow \log y=\int\left(\frac{1}{x}-x\right) d x=\log x-\frac{x^{2}}{2}+\frac{1}{2} \log c$
$\Rightarrow 2 \log y+x^{2}=2 \log x+\log c \Rightarrow y^{2} e^{x^{2}}=c x^{2}$
24. (c)
$\left(x+2 y^{3}\right) \frac{d y}{d x}=y \Rightarrow x+2 y^{3}=y \frac{d x}{d y} \Rightarrow \frac{x}{y}+2 y^{2}=\frac{d x}{d y}$
$\Rightarrow \frac{d x}{d y}-\frac{x}{y}=2 y^{2}$, Compare with $\frac{d x}{d y}+P x=Q$,
$\int P d y=\int-\frac{1}{y} d y=-\log y=\log \left(\frac{1}{y}\right)$
$\mathrm{e}^{\int \mathrm{Pdy}}=\mathrm{e}^{\log (1 / \mathrm{y})}=\frac{1}{\mathrm{y}}$, solution is $x \mathrm{e}^{\int \mathrm{Pdy}}=\int \mathrm{Q} \mathrm{e}^{\int \mathrm{Pdy}} \mathrm{dy}$
$\Rightarrow x\left(\frac{1}{y}\right)=\int\left(2 y^{2}\right)\left(\frac{1}{y}\right) d y=\int 2 y d y=y^{2}+c$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=\mathrm{c}+\mathrm{y}^{2}$
$\Rightarrow \mathrm{x}=\mathrm{y}\left(\mathrm{c}+\mathrm{y}^{2}\right)$.
25. (c)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y+y}{x y+x} \Rightarrow \frac{d y}{d x}=\frac{y(1+x)}{x(1+y)} \\
& \Rightarrow \int\left(\frac{1+y}{y}\right) d y=\int\left(\frac{1+x}{x}\right) d x \Rightarrow \int\left(\frac{1}{y}+1\right) d y=\int\left(\frac{1}{x}+1\right) d x \\
& \Rightarrow \log y+y=\log x+x+\log c \Rightarrow \log \left(\frac{y}{x}\right)=(x-y)+\log c \\
& \Rightarrow \frac{y}{x}=c e^{x-y} \Rightarrow y=c x e^{x-y}
\end{aligned}
$$

26. (a)

Order is obviously 2.
The given differential equation is $\frac{d y}{d x}=-\left(x^{\frac{1}{4}}+\frac{d^{2} y}{d x^{2}}\right)^{3}$
\Rightarrow degree $=3$.
16. (b)
27. (b)

Area $==\frac{1}{2}(2)(4)=4$
28. (a)

The given equation can be written as
$\left(\frac{d y}{d x}-e^{-x}\right)\left(\frac{d y}{d x}-e^{x}\right)=0$
$\Rightarrow \frac{d y}{d x}-e^{-x}=0$ or $\frac{d y}{d x}-e^{x}=0$
$\Rightarrow d y-e^{-x} d x=0$ or $d y-e^{x} d x=0$
$\Rightarrow \mathrm{y}+\mathrm{e}^{-\mathrm{x}}=\mathrm{C}$ or $\mathrm{y}-\mathrm{e}^{\mathrm{x}}=\mathrm{C}$.
29. (d)
$\mathrm{f}(\mathrm{x})=\cos \left(\mathrm{x}^{2}\right)$ is a non-periodic function.
30. (b)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \mathrm{x} \cos \left(\frac{\pi}{4 \mathrm{x}}\right) \sin \left(\frac{\pi}{4 \mathrm{x}}\right) \\
& =\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{x}}{2} \cdot \sin \left\{2\left(\frac{\pi}{4 \mathrm{x}}\right)\right\} \\
& =\lim _{\mathrm{x} \rightarrow \infty} \frac{\sin \left(\frac{\pi}{2 \mathrm{x}}\right)}{\left(\frac{\pi}{2 \mathrm{x}}\right)} \cdot\left(\frac{\pi}{2}\right) \cdot \frac{1}{2}=(1) \cdot\left(\frac{\pi}{2}\right) \cdot \frac{1}{2}=\frac{\pi}{4} .
\end{aligned}
$$

31. (a)
(a)
$\mathrm{F}(1)$
(d)
32. (a)

$\Rightarrow \frac{d^{2} y}{d x^{2}}=e^{x}(x+1)+e^{x} .1 \Rightarrow \frac{d^{2} y}{d y^{2}}=e^{x}(x+2)$
Now $\frac{d y}{d x}=0 \Rightarrow e^{x}(x+1)=0 \Rightarrow x+1=0 \Rightarrow x=-1$
Now (ii) $\Rightarrow \frac{d^{2} y}{d x^{2}}=e^{-1}(-1+2)=\frac{1}{e}(1)>0$
$\therefore \mathrm{x}=-1$ is a point of minima.
33. (b)
$I=\int_{0}^{\pi / 2} \frac{\cos x d x}{(1+\sin x)(2+\sin x)}$
Put $\sin x=y, \cos x d x=d y$,
$I=\int_{0}^{1} \frac{\cos x d x}{(1+y)(2+y)}=\int_{0}^{1}\left(\frac{1}{1+y}-\frac{1}{2+y}\right) d y$
$=[\log (1+y)-\log (2+y)]_{y=0}^{1}=\left\{\log \left(\frac{1+y}{2+y}\right)\right\}_{y=0}^{1}$
$=\log \frac{2}{3}-\log \frac{1}{2}=\log \left(\frac{2}{3}\right) \cdot\left(\frac{2}{1}\right)=\log \frac{4}{3}$.
34. (a)

$$
\begin{align*}
& \sqrt{x}+\sqrt{y}=1 \tag{i}\\
& x+y=1 \tag{ii}
\end{align*}
$$

(1) represents parabola it intersects x-axis and y-axis at $(1,0)$ and $(0,1)$

Required area $=\int_{0}^{1}\left(y_{1}-y_{2}\right) d x$
$=\int_{0}^{1}\left[(1-x)-(1-\sqrt{x})^{2}\right] d x=\int_{0}^{1}[(1-x)-(1+x-2 \sqrt{x})] d x$
$=\int_{0}^{1}(-2 x+2 \sqrt{x})=-1+2\left(\frac{2}{3}\right)=\frac{1}{3}$.
CHEMISTRY
37.

Initial pressure 0.5
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}$ (graphite)
Final pressure $0.5-x$

$$
\begin{aligned}
& 0.5-x+2 x=0.8 \\
& x=0.8-0.5=3
\end{aligned}
$$

$$
\mathrm{k}_{\mathrm{p}}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{CO}_{2}}\right]}=\frac{[0.6]^{2}}{[0.2]}=\frac{0.36}{0.2}=1.8 \mathrm{~atm}
$$

38. $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}$
$1-\alpha$
α
Total moles initial
Total moles at equilibrium
Molar mass of mixture at equilibrium
Molar mass initial
$\frac{1}{1+\alpha}=\frac{124}{208.32}$
$1+\alpha=1.68$
$\alpha=0.68$
$\therefore \quad$ extent of dissociation of $\mathrm{PCl}_{5}=0.68 \times 100=68 \%$
39. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=16$
$\mathrm{Q}=\frac{1 \times 1}{1 \times 1}=1$
Equ. will shift forward
$\therefore \quad \mathrm{K}_{\mathrm{c}}=16=\frac{(1+\mathrm{x})(1+\mathrm{x})}{(1-\mathrm{x})(1-\mathrm{x})}=\frac{(1+\mathrm{x})^{2}}{(1-\mathrm{x})^{2}}$
or

$$
4=\frac{1+x}{1-x}
$$

$$
x=0.6
$$

$\therefore \quad[\mathrm{NO}]$ at equ. $=1+\mathrm{x}=1.6 \mathrm{M}$.
42.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

$\begin{array}{llccc}\text { Initial moles } & 1 & 1 & & \\ \text { Moles at equi. } & 0.75 & 0.75 & 0.25 & 0.25\end{array}$
$\mathrm{K}_{\mathrm{c}}=\frac{[0.25][0.25]}{[0.75][0.75]}=\frac{1}{3} \times \frac{1}{3}=\frac{1}{9}$
45. $K_{P}=K_{C}[R T]^{-1}$
$K_{P}=\frac{26}{(0.0821 \times 523)}=0.61 \mathrm{~atm}^{-1}$
47. $\mathrm{K}_{\mathrm{P}}=2.9 \times 10^{-5}=\left[\mathrm{P}_{\mathrm{NH}_{3}}\right]^{2}\left[\mathrm{CO}_{2}\right]$
$2.9 \times 10^{-5}=\left[\frac{2 \mathrm{P}}{3}\right]^{2}\left[\frac{\mathrm{P}}{3}\right]$
$2.9 \times 10^{-5}=\frac{4}{27} \mathrm{P}^{3}$
$\mathrm{P}^{3}=\frac{2.9 \times 27}{4} \times 10^{-5}$
$\mathrm{P}^{3}=19.575 \times 10^{-5}$
$\mathrm{P}=0.0582 \mathrm{~atm}$.
51. $\mathrm{pH}=3\left[\mathrm{H}^{+}\right]=10^{-3}$
$\mathrm{pH}=4\left[\mathrm{H}^{+}\right]=10^{-4}$

Total $\left[\mathrm{H}^{+}\right]=\frac{10^{-3}+10^{-4}}{2}=\frac{11 \times 10^{-4}}{2}=5.5 \times 10^{-4}$
$\mathrm{pH}=-\log \left[5.5 \times 10^{-4}\right]=3.26$
52. $\mathrm{pH}_{(\text {old })}=\mathrm{p}^{\mathrm{ka}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\mathrm{pH}_{(\text {new })}=\mathrm{p}^{\mathrm{ka}}+\log 10 \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\mathrm{pH}_{\text {(new) }}=1+\mathrm{pH}_{\text {(old) }}$
53. $[\mathrm{NaOH}]=10^{-5} \mathrm{M}$

When diluted conc. of NaOH becomes $=10^{-8} \mathrm{M}$ pOH of solution will lie between 6 and 7
$\therefore \mathrm{pH}$ of solution will lie between 7 and 8
56. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

$$
\begin{array}{lll}
1-0.013 & 0.013 & 0.013
\end{array}
$$

Conc. of $\mathrm{CH}_{3} \mathrm{COOH}=0.1 \mathrm{M}$
Conc. of $\left[\mathrm{H}^{+}\right]=0.1 \times 0.013=1.3 \times 10^{-3}$
$\mathrm{pH}=-\log 1.3 \times 10^{-3}=3-0.11=2.89$
58. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$

$$
\therefore 4.5=4.2+\log \frac{[\text { Salt }]}{[\text { Acid }]}=\log \frac{[\text { Salt }]}{[\text { Acid }]}=0.3
$$

(since $\log 2=0.3$)

$$
\therefore \frac{[\text { Salt }]}{[\text { Acid }]}=2
$$

Let $\mathrm{V} \mathrm{ml} 1 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ solution and $(300-\mathrm{V}) 1 \mathrm{M} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ solution be mixed together

$$
\begin{aligned}
& {[\text { Acid }]=\frac{V \times 1}{1000} \times \frac{1000}{300} ;[\text { Salt }]=\frac{(300-V)}{1000} \times \frac{1000}{300}} \\
& {[\text { Acid }]=\frac{V}{300} ;[\text { Salt }]=\frac{300-V}{300}} \\
& \therefore \frac{300-V / 300}{V / 300}=2 \\
& =300-\mathrm{V}=2 \mathrm{~V} \therefore \mathrm{~V}=100 \mathrm{ml}
\end{aligned}
$$

59. For neutral solution $\left[\mathrm{H}^{+}\right]$always must be equal to $\left[\mathrm{OH}^{-}\right]$
60. For $1 / 4$ neutralization $\mathrm{pH}=\mathrm{p}^{\mathrm{Ka}}+\log \frac{1 / 4}{3 / 4}$
$\mathrm{pH}=\mathrm{p}^{\mathrm{Ka}}+\log 1 / 3$
For $3 / 4$ neutralization $\mathrm{pH}=\mathrm{p}^{\mathrm{Ka}}+\log \frac{3 / 4}{1 / 4}$
$\mathrm{pH}=\mathrm{p}^{\mathrm{ka}}+\log 3$
Difference in pH is $=\mathrm{p}^{\mathrm{Ka}}+\log 3-\mathrm{p}^{\mathrm{Ka}}-\log \frac{1}{3}$
$=\log 3-\log 1 / 3$
$=2 \log 3$.
61. pH of pure water $=7$

Conc. of OH^{-}in 10 Lt . water $=\frac{10^{-2}}{10}=10^{-3}$
pH of solution $=3$
pH change by $=7-3=4$.
62. $\alpha=1.8 \times 10^{-9}$

$$
\begin{aligned}
\mathrm{K}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \approx & \mathrm{C} \alpha^{2}=55.5 \times(1.8 \\
& =179.82 \times 10^{-18} \\
& =1.8 \times 10^{-16}
\end{aligned}
$$

63. $\mathrm{pH}=\mathrm{p}^{\mathrm{ka}}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pH}=-\log \left[2 \times 10^{-4}\right]+\log \frac{[1]}{[1]}$
$\mathrm{pH}=-\log \left[2 \times 10^{-4}\right]$
$\left[\mathrm{H}^{+}\right]=2 \times 10^{-4}$.
64. $\mathrm{V}_{\mathrm{A}}=1 \mathrm{Lt}$
$\mathrm{V}_{\mathrm{B}}=0.5 \mathrm{Lt}$
$\mathrm{P}_{\mathrm{A}}=600 \mathrm{~mm}$ of Hg
$\mathrm{P}_{\mathrm{B}}=800 \mathrm{~mm}$ of Hg
$P V=P_{A} V_{A}+P_{B} V_{B}$
$P=\frac{1 \times 600+0.5 \times 800}{2}=500 \mathrm{~mm}$ of Hg
65. Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}$

$$
\begin{aligned}
& =\sqrt{2(2+1)} \frac{\mathrm{h}}{2 \pi} \\
& =\sqrt{6} \frac{\mathrm{~h}}{2 \pi}
\end{aligned}
$$

69. Order of reaction $=\frac{3}{2}-1=\frac{1}{2}$
70. gm equi of $\mathrm{Na}_{2} \mathrm{CO}_{3} \times \mathrm{H}_{2} \mathrm{O}=$ gm equi. of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{0.62}{\frac{106+18 x}{2}}=\frac{100}{1000} \times \frac{1}{10}$
$62=53+9 x$
$\mathrm{x}=1$.

PHYSICS

71. Force on the bullet becomes zero at
$0=600-\left(2 \times 10^{5}\right) t$
or $t=0.003 \mathrm{~s}$
\therefore Impulse $=\int_{0}^{0.003} F d t$
$=\int_{0}^{0.003}\left(600-2 \times 10^{5} t\right) d t=0.9 N_{-s}$
72. Initial momentum $P_{i}=m v$

Final momentum $P_{f}=-m v$
Change in momentum $=P_{i}-P_{f}=2 m v$
73. $W=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}$ Here $x=\frac{t^{3}}{3}$
$\therefore \frac{d x}{d t}=v=t^{2}$
$\therefore W=\frac{1}{2} \times 2 \times[16-0]=16$ Joule
74. $P Q=(P+R) v$
$\therefore v=\frac{P Q}{P+R}$
75. Work done by such force is always zero since force is acting in a direction perpendicular to velocity.
\therefore from work-energy theorem $=\Delta \mathrm{K}=0$.
K remains constant.
76.

Momentum $=M \times v=M \times \sqrt{\frac{k}{M}} \cdot L=\sqrt{k M} \cdot L$.
77. $I_{A X}=m\left(1 \cos 60^{\circ}\right)^{2}+m l^{2}$

$$
\begin{gathered}
=\frac{m l^{2}}{4}+m l^{2} \\
=\frac{5}{4} m l^{2}
\end{gathered}
$$

\therefore (C)
78. $K=\frac{1}{2} I \omega^{2} I . \omega=2 I \omega^{\prime} ; \quad K^{\prime}=\frac{1}{2} \times 2 I\left(\frac{\omega}{2}\right)^{2} \omega^{\prime}=\frac{\omega}{2}$
$=\frac{1}{2}\left(\frac{1}{2} I \omega^{2}\right)=\frac{1}{2} K$
\therefore (B)
79. (D)
$\frac{1}{2} m v^{2} \propto \mathrm{t}$
$\frac{1}{2} m v^{2}=A t$ where A is constant
or $\quad \mathrm{v} \propto \sqrt{\mathrm{t}}$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\sqrt{\frac{2 \mathrm{~A}}{\mathrm{~m}}} \frac{1}{2 \sqrt{\mathrm{t}}}$
$\mathrm{F}=\mathrm{ma}=\sqrt{2 \mathrm{Am}} \frac{1}{2 \sqrt{\mathrm{t}}} \quad \mathrm{F} \propto \frac{1}{\mathrm{~V}}$
80. (A)

$\mathrm{u}^{2}=5 \mathrm{gR}$
$\therefore \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gR}=5 \mathrm{gR}-2 \mathrm{gR}=3 \mathrm{gR}$
Tangential acceleration at B is $a_{t}=g$ (downwards) centripetal acceleration at B is
$\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=3 \mathrm{~g}$
\therefore total acceleration will be $\mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{c}}+\mathrm{a}_{\mathrm{t}}^{2}}=\mathrm{g} \sqrt{10}$
81. As we know that time period of simple pendulum i.e. $\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$.

Where g is acceleration due to gravity on the surface of earth and is given as $\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$.
At height R the acceleration due to gravity
i.e $g^{\prime}=\frac{\pi^{2}}{4} \mathrm{~m} / \mathrm{s}^{2}$
$\therefore T=2 \pi \sqrt{\frac{1}{\left(\pi^{2} / 4\right)}}=4 \mathrm{~s}$
\therefore (D)
82. Energy required to raise it to a height h
i.e. $\mathrm{E}_{1}=$ change in potential energy

$$
=-\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}-\left(-\frac{\mathrm{GMm}}{\mathrm{R}}\right)=\frac{\mathrm{GMmh}}{\mathrm{R}(\mathrm{R}+\mathrm{h})} \Rightarrow \mathrm{E}_{1}=\mathrm{gR}^{2} \mathrm{~m} \frac{\mathrm{~h}}{\mathrm{R}^{2}\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)}=\frac{\mathrm{mgh}}{1+\frac{\mathrm{h}}{\mathrm{R}}}
$$

On the other hand energy required to put it into orbit
i.e. $\mathrm{E}_{2}=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{mv}_{o}^{2}}{\mathrm{R}+\mathrm{h}}=\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^{2}} ; \mathrm{E}_{2}=\frac{\mathrm{mgR}}{2\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)} \\
& \\
& \quad \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{2 \mathrm{~h}}{\mathrm{R}} ; \quad \therefore \quad \mathrm{E}_{1}: \mathrm{E}_{2}=2 \mathrm{~h}: \mathrm{R} \\
& \therefore \quad \text { (C) }
\end{aligned}
$$

83. The gravitational field due to ring at a distance $\sqrt{3} r$ is given by

$$
\begin{aligned}
& \mathrm{E}=\frac{\mathrm{Gm} \sqrt{3} \mathrm{r}}{\left[\mathrm{r}^{2}+(\sqrt{3} \mathrm{r})^{2}\right]^{3 / 2}}=\frac{\sqrt{3} \mathrm{Gm}}{8 \mathrm{r}^{2}} \\
& \text { Force }=\mathrm{M} \times \mathrm{E}=\frac{\sqrt{3} \mathrm{GMm}}{8 \mathrm{r}^{2}}
\end{aligned}
$$

\therefore (C)
84. Here cavities and the mass of the sphere is symmetrically situated about the origin, therefore gravitational field at the origin of this object is zero.
The circle $y^{2}+z^{2}=36$ has a radius 6 and all points on it are at a distance 6 units from the centre where whole mass of the sphere can be supposed to be connected. Circle is outside the sphere.
Situation is similar in the case with $\mathrm{y}^{2}+\mathrm{z}^{2}=4$.
\therefore (A), (C) and (D) are correct.
Hence (B) is the option.
85. As we know that inside the uniform solid sphere, $F=\frac{G M}{R^{3}} r$
$\therefore \quad \mathrm{F}_{1}=\frac{\mathrm{GM}}{\mathrm{R}^{3}} \mathrm{r}_{1} \quad$ and $\quad \mathrm{F}_{2}=\frac{\mathrm{GM}}{\mathrm{R}^{3}} \mathrm{r}_{2}$

$$
\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \text { if } \quad \mathrm{r}_{1}<\mathrm{R} \text { and } \mathrm{r}_{2}<\mathrm{R}
$$

Again outside the solid sphere

$$
\mathrm{F}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}
$$

$\therefore \quad \mathrm{F}_{1}=\frac{\mathrm{GM}}{\mathrm{r}_{1}^{2}}$ and $\mathrm{F}_{2}=\frac{\mathrm{GM}}{\mathrm{r}_{2}^{2}} \Rightarrow \frac{\mathrm{~F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}^{2}}$
\therefore (A)
86. According to question $\mathrm{F}=-\frac{k}{r}$ where k is proportionality constant.

For orbital motion

$$
\frac{m v^{2}}{r}=\frac{k}{r} \Rightarrow \mathrm{v}=\sqrt{\frac{k}{m}}
$$

Hence speed is independent of radius.
\therefore (B)
87. $\quad P_{a}=1.01=P_{o}+\frac{4 T}{a}$

$$
P_{b}=1.02=P_{o}+\frac{4 T}{b}
$$

$\therefore \quad \frac{4 T}{a}=0.01$
and $\frac{4 T}{b}=0.02 \quad\left(\because \quad P_{o}=1\right.$ atmosphere $)$
$\therefore \quad \frac{a}{b}=2 \quad$ or $\quad \frac{V_{a}}{V_{b}}=\frac{a^{3}}{b^{3}}=\frac{8}{1}$
88. Since two soap bubbles coalesce in vacuum without change in temperature, there is neither release nor absorption of energy. This implies no change in surface area.
So $8 \pi r^{2}+8 \pi r^{2}=8 \pi R^{2}$
or $R^{2}=2 r^{2} \quad$ or $\quad R=(2)^{1 / 2} r$
89. If a liquid can rise to a height h, but the tube has insufficient height h^{\prime}, then the angle of contact increases from θ to θ^{\prime}, given by

$$
\begin{aligned}
\frac{h}{\cos \theta} & =\frac{h^{\prime}}{\cos \theta^{\prime}} \\
\frac{2}{\cos \theta} & =\frac{1}{\cos \theta^{\prime}} \quad \text { or } \quad \frac{2}{\cos 0^{\circ}}=\frac{1}{\cos \theta^{\prime}} \\
\therefore \quad \cos \theta^{\prime} & =\frac{1}{2} \quad \text { or } \quad \theta^{\prime}=60^{\circ}
\end{aligned}
$$

90. Pressure at a depth h inside water or pressure outside the bubble $=P+h d g$

As excess pressure inside the air bubble $=2 \mathrm{~T} / \mathrm{r}$
\therefore pressure inside the air bubble $=P+h d g+\frac{2 T}{r}$
91. Weight of liquid column, $\mathrm{W}=2 \pi r T \cos \theta$

For water, $\theta=0$
$\therefore \quad W=2 \pi r T$
or $\quad 2 \pi r=\frac{W}{T}=\frac{75 \times 10^{-4}}{6 \times 10^{-2}}=12.5 \times 10^{-2}$
92. $\quad h_{1}-h_{2}=\frac{2 T}{d g}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$

$$
10^{-2} \times 3.6=\frac{2 \times 0.07}{10^{3} \times 9.8}\left(\frac{1>}{4 \times 10^{-3}}-\frac{1}{d}\right)
$$

Solving, we get, $\mathrm{d}=8 \times 10^{-3} \mathrm{~m}$
93. $F=\frac{2 \pi r^{2} T}{d}=\frac{2 \times 22 \times\left(5 \times 10^{-2}\right)^{2} \times 70 \times 10^{-3}}{7 \times 0.5 \times 10^{-3}}=\frac{10 \times 22 \times 10^{-2}}{1}=2.2 \mathrm{~N}$
94. Radius of curvature at meniscus $\mathrm{R}=(r / \cos \theta)$

Pressure difference across meniscus $=\frac{2 T}{R}$
\therefore Pressure difference $=\frac{2 T \cos \theta}{r}$
95. If follows from the figure that $\frac{r}{R}=\cos \theta$
or $\quad R=\frac{r}{\cos \theta}$

96. Since the bubbles coalesce in vacuum and there not change in temperature, hence its surface energy does not change. This means that the surface area remains unchanged.
Hence, $4 \pi r_{1}^{2}+4 \pi r_{2}^{2}=4 \pi R^{2}$
$\therefore \quad R=\sqrt{r_{1}^{2}+r_{2}^{2}}$
97. $\quad F_{C}=2 \pi r \rho g \int_{0}^{h} y d y=\pi r \rho g h^{2}$

As $F_{B}=F_{C}$
So $\pi r^{2} h \rho g=\pi r \rho g h^{2} \quad$ i.e. $\quad r=h$

99. Let l be the side of the cube. Volume of the cube out side $=$ volume of water displaced due to mass.

Water displaced is 200 g and its volume is $200 \mathrm{~cm}^{3}$.
So $2 \times l \times l=200$ or $l=10 \mathrm{~cm}$
100. $\tan \theta=\frac{a}{g}$

Here $\tan \theta=\frac{h}{l}$
So $\frac{h}{l}=\frac{a}{g} \quad$ or $h=\frac{a l}{g}$

(where h is the difference in the height in the two limbs).
101. As the air is pumped out, buoyancy due to air will become zero.

Hence, $V_{2}>V_{1}$.
102.

$$
\begin{align*}
& t_{1}=10=\frac{A}{a} \sqrt{\frac{2}{g}}[\sqrt{H}] \\
& t_{2}=\frac{A}{a} \sqrt{\frac{2}{g}}\left[\sqrt{\frac{H}{2}}\right]=10 \times\left[\frac{1}{\sqrt{2}}\right]=10 \times 0.7=7 \mathrm{~min} \tag{1}
\end{align*}
$$

104. $m_{1} v_{1}+m_{2} v_{2}=0$
$\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\frac{G m_{1} m_{2}}{d}=0$
$v_{1}+v_{2}=\sqrt{\frac{2 G\left(m_{1} m_{2}\right)}{d}}$
\therefore (A)
105. $\mathrm{g}=\sqrt{\frac{\mathrm{G} \times \frac{4}{3} \pi \mathrm{R}_{\mathrm{i}}^{3} \mathrm{P}}{\mathrm{Re}^{2}}}=\sqrt{\mathrm{G} \times \frac{4}{3} \pi 5 \mathrm{Re} \times \mathrm{P}}$

$$
\Rightarrow \quad \sqrt{\mathrm{P}}=\sqrt{5 \mathrm{P}^{\prime}}
$$

$$
\mathrm{P}^{\prime}=\left(\frac{\mathrm{P}}{5}\right) .
$$

