

AIEEE - COMMON PRACTICE TEST-3

Answers									
	(•)	36. (A)	71.	(B)					
ı. 0	(A) (D)	37. (A)	72.	(C)					
2. 2	(D) (C)	38. (B)	73.	(C)					
J. ∠	(C) (A)	39. (D)	74.	(B)					
4. 5	(A) (B)	40. (C)	75.	(A)					
5. 6	(D) (B)	41. (B)	76.	(B)					
0. 7	(C)	42. (A)	77.	(C)					
8.	(O) (D)	43. (D)	78.	(B)					
9.	(D)	44. (O)	79.	(D)					
10.	(C)	45. <u>(A)</u>	80.	(A)					
11.	(C) (A)	46. (B)	81.	(D)					
12.	(B)	47. (C)	82.	(C)					
13.	(C)	48 . (D)	83.	(C)					
14.	(B)	49 (B)	84.	(B)					
15.	(A)	50. (D)	85.	(A)					
16.	(B)	51. (B)	86.	(B)					
17.	(C)	52. (B)	87.	(C)					
18.	(C)	53. (D)	88.	(C)					
19.	(C)	54. (D)	89.	(C)					
20.	(C)	55. (B)	90.	(B)					
21.	(A)	56. (C)	91.	(D)					
22.	(D)	57. (A)	92.	(C)					
23.	(C)	58. (C)	93.	(C)					
24.	(C)	59. (B)	94.	(A)					
25.	(C)	60. (D)	95.	(D)					
26.	(A)	61. (A)	96. o .	(D)					
27.	(B)	62. (A)	97.	(B)					
28.	(A)	63. (A)	98.	(A)					
29.	(D)	64. (D)	99.	(B)					
30.	(B)	65. (A)	100.	(C)					
31.	(A)		101.	(C) (D)					
32.	(D)	ο. (A)	102.	(B)					
33.	(A)	60 (A)	103.	(A)					
34.	(B)	09. (D) 70. (A)	104.	(A) (P)					
35.	(A)	70. (A)	105.	(D)					

HINTS AND SOLUTION

MATHEMATICS

1. (a)

$$y \frac{dx}{dy} = 2x \Rightarrow 2 \frac{dy}{y} = \frac{dx}{x} \Rightarrow \ln y^2 = \ln x - \ln c \Rightarrow x = cy^2$$
2. (b)

$$y - x \frac{dy}{dx} = 2xy^2 \Rightarrow \frac{ydx - xdy}{y^2} = 2xdx \Rightarrow \int d(x/y) = x^2 + c$$

$$\Rightarrow x = x^2y + cy$$
3. (c)

$$\frac{dy}{dx} = \frac{x}{y} \Rightarrow x^2 - y^2 = c$$

$$\Rightarrow a \operatorname{rectangular} hyperbola.$$
4. (a)

$$\frac{dy}{dx} = \frac{2y}{x} \Rightarrow \frac{dy}{y} = 2 \frac{dx}{x}$$

$$\Rightarrow \ln y = \ln x^2 + \ln c$$
5. (b)

$$(1 + y^2) dx - (\tan^2 y - x)dy = 0$$

$$\Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{-1} y}{1 + y^2}$$
Comparing with $\frac{dx}{dy} + Px = Q, \int P dy = \int \frac{dy}{1 + y^2} = \tan^{-1} y$
Integrating factor = $e^{\int P dy} = dm^2 y$.
6. (b)

$$\frac{dy}{(1 + y)} = \int (1 + x) (1 + y)$$

$$\Rightarrow \int \frac{dy}{(1 + y)} = \int (1 + x) dx \Rightarrow \log(1 + y) = \left(\frac{x^2}{2} + x\right) + c \dots (i)$$
Put $x = -1$ and $y = 0$ as $y(-1) = 0$ in (i)

$$\log 1 = \frac{1}{2} - 1 + c \text{ or } c = \frac{1}{2}$$
Now (i) $\Rightarrow \log(1 + y) = \frac{x^2}{2} + x + \frac{1}{2}$

$$\Rightarrow y = e^{(x+1)^2/2} - 1.$$
7. (c)

$$\frac{dy}{dx} = \int k dx \Rightarrow \log y = kx + \log c \Rightarrow y = ce^{kx} \dots (i)$$

$$i) \Rightarrow \int \frac{dy}{y} = \int k dx \Rightarrow \log y = kx + \log c \Rightarrow y = ce^{kx} \dots (i)$$

$$\lim_{x \to \infty} y = e^{k}, duct og given condition$$

$$\lim_{x \to \infty} y = e^{k}, duct og given condition$$

$$\lim_{x \to \infty} y = e^{k} = 0$$

$$\lim_{x \to \infty} y = e^{k} = 0$$

It is true only if k < 0.

8. (d) x dy - y dx = 0 $\Rightarrow \int \frac{dy}{v} - \int \frac{dx}{x} = 0$ $\Rightarrow \log y - \log x = \log c \Rightarrow \log \left(\frac{y}{x}\right) = \log c \Rightarrow \frac{y}{x} = c \Rightarrow y = cx$ \Rightarrow straight line through origin. 9. (a) Length of normal = y sec ψ = y $\sqrt{1 + \tan^2 \psi}$ $= y \left| 1 + \left(\frac{dy}{dx} \right)^2 \right| = k$, given This $\Rightarrow y \frac{dy}{dx} = \pm \sqrt{k^2 - y^2}$. 10. (c) Surface area of the rain drop is $S = 4\pi r^2$ And r = 3 mm, r = 2 mm. Volume of rain drop is $V = \frac{4}{3}\pi r^3$ Giving $\frac{dV}{dt} \propto S$ i.e. $\frac{dV}{dt} = KS$ where K is constant or dV = K S dtTherefore from (i) and (ii), $4\pi r^2 dr = K 4\pi r^2 dt$ i.e., dr = K dtIntegrating both sides, we get r = Kt + c, c is constant of integration. At r = 3, t = 0 so that c = 3 and at r = 2, t = 1, so that $2 = k \times 1 + 3 \Longrightarrow k = -1$ Here r = 3 - t. 11. (a) $2(\text{Area of }\Delta ABC)$ $\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix} = \begin{vmatrix} 6 & 3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} = 49$ 2.(Area of ΔDBC) = $\begin{vmatrix} x & 3x & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} = 28x - 14$ It is given $\frac{\text{Area of } \Delta \text{DBC}}{\text{Area of } \Delta \text{ABC}} = \frac{1}{2} \Rightarrow \frac{(28x - 14)/2}{49/2} = \frac{1}{2}$ $\Rightarrow \frac{28x-14}{49} = \frac{1}{2} \Rightarrow x = \frac{11}{8}.$

12. (b) $O(0, 0), A(a, b), B(c, d), \overline{QA} = ia + jb, \overline{OB} = ic + jd$ $\cos \theta = \frac{\overrightarrow{OA} . \overrightarrow{OB}}{(OA)(OB)} = \frac{(ia + jb).(ic + jd)}{\sqrt{(a^2 + b^2)}\sqrt{(c^2 + d^2)}}$ $=\frac{\mathrm{ac+bd}}{\sqrt{\mathrm{(a^2+b^2)}}\sqrt{\mathrm{(c^2+d^2)}}}.$ 13. (c) $\overrightarrow{OQ}_1.\overrightarrow{OQ}_2 = (OQ_1)(OQ_2)\cos\theta$ $\overrightarrow{OQ}_1 = x_1 \mathbf{i} + \mathbf{j} y_1, \overrightarrow{OQ}_2 = \mathbf{i} x_2 + \mathbf{j} y_2$ \Rightarrow x₁x₂ + y₁y₂ = (OQ₁) (OQ₂) cos θ 14. (b) Equation of line BC is 4x + y = 7And so equation of AD is x - 3y = cBut it passes through A(0, 0) : c = 0. A (0, 0) F 90 С В D (1, 3)(2, -1)Equation of AD is x - 4y = 0...(i) Since AC : 3x - y = 0. and so **BP** : x + 3y + 1 = 0...(ii) $\left(\frac{4}{7},\frac{-1}{7}\right).$ Solving (i) and (ii), we get orthocenter 15. (a) Equation of line through first two points is $y-0 = \frac{b-0}{-a-0}(x-0) \Rightarrow bx-ay=0$...(i) (i) is satisfied by (a, b) and (a^2, ab) both. Hence all points are collinear. 16. (b)

Slope of AD. slope of BE = -1

$$\Rightarrow \left(-\frac{2b}{a}\right)x\left(\frac{b}{a}\right) = -1 \Rightarrow 2b^2 = a^2$$

17. (c)

Slope of line AC is $m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y - 1}{x - 3}$ Slope of line AB is $m_2 = \frac{5 - 1}{6 - 3} = \frac{4}{3}$ AB \perp AC \Rightarrow $m_1m_2 = -1 \Rightarrow \left(\frac{y - 1}{x - 3}\right)\left(\frac{4}{3}\right) = -1$ $\Rightarrow 3x + 4y = 13$ (i) Area of \triangle ABC = 7

Integrating factor = $e^{\int Pdx} = e^{\int \frac{1}{x}dx} = e^{\int \frac{1}{x}dx} = e^{\log x} = x$.

22. (d)
ax² + by² = 1 ...(i)
Diff. this w.r.t. x, 2ax + 2byy₁ = 0
$$\Rightarrow$$
 ax + byy₁ = 0 ...(ii)
Again diff. w.r.t. x, we get
a + by₁² + byy₂ = 0 $\Rightarrow \frac{1}{b} + (y_1^2 + yy_2) = 0$, using (ii) we get
 $-\left(\frac{yy_1}{x}\right) + (y_1^2 + yy_2) = 0 \Rightarrow (y_1^2 + yy_2)x - yy_1 = 0$
 $\Rightarrow xyy' + x(y')^2 - yy' = 0$.
23. (c)
y dx - x dy = x²y dx $\Rightarrow (y - x^2y) dx = x dy$
 $\Rightarrow \int \left(\frac{1-x^2}{x}\right) dx = \int \frac{dy}{y}$
 $\Rightarrow \log y = \int \left(\frac{1}{x} - x\right) dx = \log x - \frac{x^2}{2} + \frac{1}{2} \log c$
 $\Rightarrow 2\log y + x^2 = 2\log x + \log c \Rightarrow y^2 e^{x^2} = ex^2$
24. (c)
(x + 2y³) $\frac{dy}{dx} = y \Rightarrow x + 2y^3 = y \frac{dx}{dy} = \frac{x}{y} + 2y^2 = \frac{dx}{dy}$
 $\Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y^2$. Compare with $\frac{dx}{dy} + Bx = 0$.
(Pdy = $\int -\frac{1}{y} dy = -\log y = \log\left(\frac{1}{y}\right)$
 $e^{\int Pdy} = e^{\log(1/y)} = \frac{1}{y}$, solution is $xe^{\int Pdy} = \int Qe^{\int Pdy} dy$
 $\Rightarrow x(\frac{1}{y}) = \int (2y^2) \left(\frac{1}{y}\right) dy = \int 2y dy = y^2 + c$
 $\Rightarrow \frac{x}{y} = c + y^2$
 $\Rightarrow x = y (c + y^2)$.
25. (c)
 $\frac{dy}{dx} = \frac{dy + y}{xy + x} \Rightarrow \frac{dy}{dx} = \frac{y(1 + x)}{x(1 + y)}$
 $\Rightarrow \int \left(\frac{1 + y}{y}\right) dy = \int \left(\frac{1 + x}{x}\right) dx \Rightarrow \int \left(\frac{1}{y} + 1\right) dy = \int \left(\frac{1}{x} + 1\right) dx$
 $\Rightarrow \log y + y = \log x + x + \log c \Rightarrow \log \left(\frac{y}{x}\right) = (x - y) + \log c$
 $\Rightarrow \frac{y}{x} = c e^{x-y} \Rightarrow y = cx e^{x-y}$
26. (a)
Order is obviously 2.
The given differential equation is $\frac{dy}{dx} = -\left(x^{\frac{1}{4}} + \frac{d^2y}{dx^2}\right)^3$

16. (b)

27. (b)
Area =
$$\frac{1}{2}(2)(4) = 4$$

28. (a)
The given equation can be written as
 $\left(\frac{dy}{dx} - e^{-x}\right)\left(\frac{dy}{dx} - e^{x}\right) = 0$
 $\Rightarrow \frac{dy}{dx} - e^{-x} = 0 \text{ or } \frac{dy}{dx} - e^{x} = 0$
 $\Rightarrow dy - e^{-x} dx = 0 \text{ or } dy - e^{x} dx = 0$
 $\Rightarrow dy - e^{-x} = C \text{ or } y - e^{x} = C.$
29. (d)
10. (b)
 $\lim_{x \to \infty} x \cos\left(\frac{\pi}{4x}\right)\sin\left(\frac{\pi}{4x}\right)$
 $= \lim_{x \to \infty} \frac{x}{2}\sin\left\{2\left(\frac{\pi}{4x}\right)\right\}$
 $= \lim_{x \to \infty} \frac{\sin\left(\frac{\pi}{2x}\right)}{\left(\frac{\pi}{2x}\right)}\cdot\left(\frac{\pi}{2}\right)\cdot\frac{1}{2} = (1)\cdot\left(\frac{\pi}{2}\right)\cdot\frac{1}{2} = \frac{\pi}{4}.$
31. (a)
 $F(1) = 1 = F(1 -) = F(1 +) 4 + 3b \Rightarrow b = 1$
32. (d)
33. (a)
 $y = xe^{x} \Rightarrow \frac{dy}{dx} = e^{x}(x + 1) \qquad \dots (i)$
 $\Rightarrow \frac{d^{2}y}{dx^{2}} = e^{x}(x + 1) + e^{x}b \Rightarrow \frac{dy}{dx^{2}} = e^{x}(x + 2) \dots (ii)$
Now $\frac{dy}{dx} = 0 \Rightarrow e^{x}(x + 1) = 0 \Rightarrow x + 1 = 0 \Rightarrow x = -1$
Now (ii) $\Rightarrow \frac{d^{2}y}{dx^{2}} = e^{-1}(-1 + 2) = \frac{1}{e}(1) > 0$
 $\therefore x = -1$ is a point of minima.
34. (b)
 $I = \int_{0}^{\pi/2} \frac{\cos xdx}{(1 + \sin x)(2 + \sin x)}$
Put sin x = y, cos x dx = dy,
 $I = \int_{0}^{1} \frac{\cos xdx}{(1 + \sin x)(2 + \sin x)}$
Put sin x = y, cos x dx = dy,
 $I = \int_{0}^{1} \frac{\cos xdx}{(1 + y)(2 + y)} = \int_{0}^{1} (\frac{1}{1 + y} - \frac{1}{2 + y}) dy$
 $= [\log(1 + y) - \log(2 + y)]_{y=0}^{1} = {\log(\frac{1 + y}{2})}_{y=0}^{1}$

35. (a)

$$\sqrt{x} + \sqrt{y} = 1$$
 ...(i)
 $x + y = 1$...(i)
 $x + y = 1$...(ii)
(i) represents parabola it intersects x-axis and y-axis at (1, 1) and (0, 1)
Required area $= \int_{0}^{1} (y_1 - y_2) dx$
 $= \int_{0}^{1} [(1 - x) - (1 - \sqrt{x})^2] dx = \int_{0}^{1} [(1 - x) - (1 + x - 2\sqrt{x})] dx$
 $= \int_{0}^{1} (-2x + 2\sqrt{x}) = -1 + 2(\frac{2}{3}) = \frac{1}{3}.$
CHEMISTRY
37. CO₂(g) + C(graphitel - 2100
Initial pressure 0.5 0 2x
 $0.5 - x + 2x = 0.8$
 $x = 0.8 - 0.5 = 3$
 $k_y = \frac{[P_{CO]^2}}{[P_{CO_2]}]} = \frac{[00^2 - 0.26}{0.2} = 1.8 atm.$
38. PCIs \rightarrow PCI: + CI
 $1 - \alpha$ α α
 $Total moles at equilibrium$ Molar mass initial
 $\frac{1}{1 + \alpha} = \frac{124}{218.322}$
 $1 + \alpha = 1.68$
 $\alpha = 0.68$
 \therefore extent of dissociation of PCI₃ = 0.68 × 100 = 68%
39. SO₂(g) + NO₂(g) = SO₁(g) + NO (g)
 $K_x = 16$
 $Q = \frac{1 + 1}{1 \times 1} = 1$
Equ. will shift forward
 \therefore $K_x = 16 = \frac{(1 + x)(1 + x)}{(1 - x)(1 - x)} = \frac{(1 + x)^2}{(1 - x)^2}$
or $4 = \frac{1 + x}{1 - x}$
 $x = 0.6$

42.

	Initial moles 1 Moles at equi. 0.75	1 0.75	0.25	0.25
	$K_{c} = \frac{[0.25][0.25]}{[0.75][0.75]} = \frac{1}{3} \times \frac{1}{3} =$	$=\frac{1}{9}$	0.20	0.20
45.	$K_{P} = K_{C} [RT]^{-1}$			2
	$K_{\rm P} = \frac{26}{(0.0821 \times 523)} = 0.61$	atm ⁻¹		~
47.	$K_{P} = 2.9 \times 10^{-5} = \left[P_{NH_{3}}\right]^{2}$	[CO ₂]		5
	$2.9 \times 10^{-5} = \left[\frac{2P}{3}\right]^2 \left[\frac{P}{3}\right]$			5
	$2.9 \times 10^{-5} = \frac{4}{27} P^3$			
	$P^{3} = \frac{2.9 \times 27}{4} \times 10^{-5}$		0	
	$P^3 = 19.575 \times 10^{-5}$ P = 0.0582 atm			
51.	$pH = 3 [H^+] = 10^{-3}$			
	$pH = 4 \left[H^+ \right] = 10^{-4}$	C		
	Total $\left[H^{+} \right] = \frac{10^{-3} + 10^{-4}}{2}$	$=\frac{11\times10^{-4}}{2}=5.5\times10^{-4}$	-4	
	$pH = -\log \left[5.5 \times 10^{-4} \right] = 3$.26		
52.	$pH_{(old)} = p^{ka} + \log \frac{[CH_3CC}{[CH_3CC]}$	DONa] DOH]		
	$pH_{(new)} = p^{ka} + \log 10$	H ₃ COONa] H ₃ COOH]		
	$pH_{(new)} = 1 + pH_{(old)}$			
53.	$[NaOH] = 10^{-5} M$	10-8 1	r.	
	pOH of solution will lie be	The becomes = 10° M tween 6 and 7	l	
	\therefore pH of solution will lie b	between 7 and 8		
56.	$CH_3COOH \implies CH_{1-0.013}$	$I_3COO^- + H^+$		
	Conc. of $CH_3COOH = 0.1$	M		
	Conc. of $\left[H^+ \right] = 0.1 \times 0.0$	$13 = 1.3 \times 10^{-3}$		
	$pH = -\log 1.3 \times 10^{-3} = 3 -$	0.11 = 2.89		
58.	$pH = pK_a + \log \frac{[Salt]}{[Acid]}$			
	$\therefore 4.5 = 4.2 + \log \frac{[Sal]}{[Acid}$	$\frac{t}{d} = \log \frac{[Salt]}{[Acid]} = 0.3$	3	
	(since $\log 2 = 0.3$)			
	$\therefore \frac{13au}{[Acid]} = 2$			
		1.1 1.000		A 1 1

Let V ml 1M C₆H₅ COOH solution and (300 – V) 1M C₆H₅COONa solution be mixed together

 $[\text{Acid}] = \frac{V \times 1}{1000} \times \frac{1000}{300}; [\text{Salt}] = \frac{(300 - V)}{1000} \times \frac{1000}{300}$ [Acid] = $\frac{V}{300}$; [Salt] = $\frac{300 - V}{300}$ $\therefore \frac{300 - V/300}{V/300} = 2$ = 300 - V = 2V : V = 100 ml59. For neutral solution [H⁺] always must be equal to [OH⁻] For ¹/₄ neutralization pH = $p^{Ka} + \log \frac{1/4}{3/4}$ 60. $pH = p^{Ka} + \log 1/3$ For ³/₄ neutralization pH = $p^{Ka} + \log \frac{3/4}{1/4}$ $pH = p^{ka} + \log 3$ Difference in pH is = $p^{Ka} + \log 3 - p^{Ka} - \log \frac{1}{2}$ $= \log 3 - \log 1/3$ $= 2 \log 3.$ pH of pure water = 761. Conc. of OH⁻ in 10 Lt. water = $\frac{10^{-2}}{10} = 10^{-3}$ pH of solution = 3pH change by = 7 - 3 = 4. $\alpha = 1.8 \times 10^{-9}$ 62. $K = \frac{C\alpha^2}{1-\alpha} \approx C\alpha^2 = 55.5 \times (1.8 \times 10^{-9})$ $= 179.82 \times 10^{-18}$ $= 1.8 \times 10^{-16}$ $pH = p^{ka} + \log \frac{[salt]}{[acid]}$ 63. $pH = -\log\left[2 \times 10^{-4}\right] + \log\left[2 \times 10^{-4}\right] + \log\left[2$ $pH = -\log\left[2 \times 10^{-4}\right]$ $\left[\mathbf{H}^{+} \right] = 2 \times 10^{-4}.$ 64. $V_A = 1Lt$ $V_{\rm B} = 0.5 \, {\rm Lt}$ $P_A = 600 \text{ mm of Hg}$ $P_B = 800 \text{ mm of Hg}$ $PV = P_A V_A + P_B V_B$ $P = \frac{1 \times 600 + 0.5 \times 800}{2} = 500 \text{ mm of Hg}$ Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$ **68.** $=\sqrt{2(2+1)}\frac{h}{2\pi}$ $=\sqrt{6}\frac{\mathrm{h}}{2\pi}.$ Order of reaction = $\frac{3}{2} - 1 = \frac{1}{2}$ 69.

70. gm equi of Na₂CO₃ x H₂O = gm equi. of H₂SO₄ $\frac{\frac{0.62}{106 + 18x}}{\frac{2}{2}} = \frac{100}{1000} \times \frac{1}{10}$ 62 = 53 + 9xx = 1.

76.

$$M$$

$$\frac{1}{2}Mv^{2} = \frac{1}{2}kL^{2}$$

$$\Rightarrow v = \sqrt{\frac{k}{M}} \cdot L$$
Momentum $M \times v = M \times \sqrt{\frac{k}{K}} L$

Momentum = $M \times v = M \times \sqrt{\frac{k}{M} \cdot L} = \sqrt{kM} \cdot L$.

77.
$$I_{AX} = m (1 \cos 60^\circ)^2 + ml^2$$

 $= \frac{ml^2}{4} + ml^2$
 $= \frac{5}{4}ml^2$

$$\therefore (C)$$

$$K = \frac{1}{2}I\omega^{2}I.\omega = 2I\omega'; \qquad K' = \frac{1}{2} \times 2I\left(\frac{\omega}{2}\right)^{2}\omega' = \frac{\omega}{2}$$

$$= \frac{1}{2}\left(\frac{1}{2}I\omega^{2}\right) = \frac{1}{2}K$$

$$\therefore (B)$$

(D)

$$\frac{1}{2}mv^{2} \propto t$$

$$\frac{1}{2}mv^{2} = At \text{ where A is constant}} \quad \text{or } v \propto \sqrt{t}$$

$$a = \frac{dv}{dt} = \sqrt{\frac{2A}{m}} \frac{1}{2\sqrt{t}}$$

$$F = ma = \sqrt{2Am} \frac{1}{2\sqrt{t}} \qquad F \propto \frac{1}{V}$$
(A)
(A)

80.

A

$$u^2 = 5gR$$

∴ $v^2 = u^2 - 2gR = 5gR - 2gR = 3gR$
Tangential acceleration at B is $a_t = g$ (downwards) centripetal acceleration at B is

$$a_c = \frac{v^2}{R} = 3g$$

: total acceleration will be $a = \sqrt{a_c^2 + a_t^2} = g\sqrt{10}$

81. As we know that time period of simple pendulum i.e. $T = 2\pi \sqrt{\frac{l}{g}}$.

Where g is acceleration due to gravity on the surface of earth and is given as $\pi^2 \text{ m/s}^2$.

At height R the acceleration due to gravity

i.e
$$g' = \frac{\pi^2}{4} m/s^2$$

 $\therefore T = 2\pi \sqrt{\frac{1}{(\pi^2/4)}} = 4 s$
 \therefore (D)

82. Energy required to raise it to a height h i.e. E_1 = change in potential energy

$$= -\frac{GMm}{(R+h)} - \left(-\frac{GMm}{R}\right) = \frac{GMmh}{R(R+h)} \implies E_1 = gR^2m\frac{h}{R^2\left(1+\frac{h}{R}\right)} = \frac{mgh}{1+\frac{h}{R}}$$

On the other hand energy required to put it into orbit

i.e.
$$E_2 = \frac{1}{2}mv^2$$

$$\therefore \quad \frac{mv_o^2}{R+h} = \frac{GMm}{(R+h)^2}; \quad E_2 = \frac{mgR}{2\left(1+\frac{h}{R}\right)}$$
$$\frac{E_1}{E_2} = \frac{2h}{R}; \quad \therefore \quad E_1: E_2 = 2h: R$$
$$\therefore \quad (C)$$

The gravitational field due to ring at a distance $\sqrt{3}$ r is given by 83.

$$E = \frac{Gm\sqrt{3}r}{\left[r^{2} + \left(\sqrt{3}r\right)^{2}\right]^{3/2}} = \frac{\sqrt{3}Gm}{8r^{2}}$$

Force = M × E = $\frac{\sqrt{3}GMm}{8r^{2}}$

: (C)

Here cavities and the mass of the sphere is symmetrically situated about the origin, therefore 84. gravitational field at the origin of this object is zero. The circle $y^2 + z^2 = 36$ has a radius 6 and all points on it are at a distance 6 units from the centre where whole mass of the sphere can be supposed to be connected. Circle is outside the sphere. Situation is similar in the case with $y^2 + z^2 = 4$. \therefore (A), (C) and (D) are correct.

Hence (B) is the option.

85. As we know that inside the uniform solid sphere,
$$F = \frac{GW}{R^3}$$

$$\therefore \quad F_{1} = \frac{GM}{R^{3}}r_{1} \quad \text{and} \quad F_{2} = \frac{GM}{R^{3}}r_{2}$$

$$\frac{F_{1}}{F_{2}} = \frac{r_{1}}{r_{2}} \quad \text{if} \quad r_{1} < R \quad \text{and} \quad r_{2} < R$$
Again outside the solid sphere
$$F = \frac{GM}{r^{2}}$$

$$\therefore \quad F_{1} = \frac{GM}{r_{1}^{2}} \quad \text{and} \quad F_{2} = \frac{GM}{r_{2}^{2}} \implies \qquad \frac{F_{1}}{F_{2}} = \frac{r_{2}^{2}}{r_{1}^{2}}$$

$$\therefore \quad (A)$$

According to question $F = -\frac{k}{r}$ where k is proportionality constant. 86.

For orbital motion

$$\frac{mv^2}{r} = \frac{k}{r} \quad \Rightarrow \quad \mathbf{v} = \sqrt{\frac{k}{m}}$$

Hence speed is independent of radius. : (B)

87.

$$P_{a} = 1.01 = P_{o} + \frac{4T}{a}$$

$$P_{b} = 1.02 = P_{o} + \frac{4T}{b}$$

$$\therefore \quad \frac{4T}{a} = 0.01$$
and $\frac{4T}{b} = 0.02$ ($\because P_{o} = 1$ atmosphere)

$$\therefore \quad \frac{a}{b} = 2 \quad \text{or} \quad \frac{V_{a}}{V_{b}} = \frac{a^{3}}{b^{3}} = \frac{8}{1}$$

88. Since two soap bubbles coalesce in vacuum without change in temperature, there is neither release nor absorption of energy. This implies no change in surface area.

So $8\pi r^2 + 8\pi r^2 = 8\pi R^2$

or
$$R^2 = 2r^2$$
 or $R = (2)^{1/2} r$

89. If a liquid can rise to a height h, but the tube has insufficient height h', then the angle of contact increases from θ to θ' , given by

$$\frac{h}{\cos\theta} = \frac{h'}{\cos\theta'}$$
$$\frac{2}{\cos\theta} = \frac{1}{\cos\theta'} \quad \text{or} \quad \frac{2}{\cos\theta^{\circ}} = \frac{1}{\cos\theta'}$$
$$\therefore \quad \cos\theta' = \frac{1}{2} \quad \text{or} \quad \theta' = 60^{\circ}$$

- 90. Pressure at a depth h inside water or pressure outside the bubble = P + hdgAs excess pressure inside the air bubble = 2T/r
 - \therefore pressure inside the air bubble = $P + hdg + \frac{2T}{r}$
- 91. Weight of liquid column, $W = 2\pi rT \cos \theta$ For water, $\theta = 0$ $\therefore W = 2\pi rT$

or
$$2\pi r = \frac{W}{T} = \frac{75 \times 10^{-4}}{6 \times 10^{-2}} = 12.5 \times 10^{-10}$$

 $10^{-2} \times 3.6 = \frac{2 \times 0.07}{10^{3} \times 9.8} \left(\frac{4}{4 \times 10^{10}} \right)$

Solving, we get, $d = 8 \times 10^{-3}$ m

 $h_1 - h_2 = \frac{2T}{dg} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$

93.
$$F = \frac{2\pi r^2 T}{d} = \frac{2 \times 22 \times (5 \times 10^{-2})^2 \times 70 \times 10^{-3}}{7 \times 0.5 \times 10^{-3}} = \frac{10 \times 22 \times 10^{-2}}{1} = 2.2 \text{ N}$$

94. Radius of curvature at meniscus $R = (r/\cos\theta)$ Pressure difference across meniscus $= \frac{2T}{R}$ \therefore Pressure difference $= \frac{2T\cos\theta}{r}$ 95. If follows from the figure that $\frac{r}{R} = \cos\theta$ or $R = \frac{r}{\cos\theta}$

96. Since the bubbles coalesce in vacuum and there not change in temperature, hence its surface energy does not change. This means that the surface area remains unchanged. Hence, $4\pi r_1^2 + 4\pi r_2^2 = 4\pi R^2$

$$\therefore \quad R = \sqrt{r_1^2 + r_2^2}$$

97.
$$F_{C} = 2\pi r \rho g \int_{0}^{h} y dy = \pi r \rho g h^{2}$$

As $F_{B} = F_{C}$
So $\pi r^{2} h \rho g = \pi r \rho g h^{2}$ i.e. $r = h$

- **98.** Total pressure
 - P = atmospheric pressure P_o + pressure due to water column P' $P = P_o + P'$ $\therefore P' = P - P_o = 3 - 1 = 2$ atm or $\rho gh = 2$ atm or $h \times 10 \times 10^3 = 2 \times 10^5$ $\therefore h = 20$ m Volume of water coming from hole is $v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = \sqrt{400}$ ms⁻¹

99. Let *l* be the side of the cube. Volume of the cube out side = volume of water displaced due to mass. Water displaced is 200 g and its volume is 200 cm³. So $2 \times l \times l = 200$ or l = 10 cm

100. $\tan \theta = \frac{a}{g}$ Here $\tan \theta = \frac{h}{l}$ So $\frac{h}{l} = \frac{a}{g}$ or $h = \frac{al}{g}$

(where h is the difference in the height in the two limbs).

101. As the air is pumped out, buoyancy due to air will become zero. Hence, $V_2 > V_1$.

102.

$$t_1 = 10 = \frac{A}{a} \sqrt{\frac{2}{g}} \left[\sqrt{H} \right]$$
$$t_2 = \frac{A}{a} \sqrt{\frac{2}{g}} \left[\sqrt{\frac{H}{2}} \right] = 10 \times \left[\frac{1}{\sqrt{2}} \right] = 10 \times 0.7 = 7 \text{ min}$$

104. $m_1v_1 + m_2v_2 = 0$ (1) $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - \frac{Gm_1m_2}{d} = 0$ (2) $v_1 + v_2 = \sqrt{\frac{2G(m_1m_2)}{d}}$ \therefore (A)

105.
$$g = \sqrt{\frac{G \times \frac{4}{3}\pi R_i^3 P}{Re^2}} = \sqrt{G \times \frac{4}{3}\pi 5 Re \times P}$$
$$\Rightarrow \sqrt{P} = \sqrt{5P'}$$
$$P' = \left(\frac{P}{5}\right).$$