AIEEE - COMMON PRACTICE TEST-5

Time: 3 hours Maximum marks: 315

MATHEMATICS

	PA	ART
1.	The differential equation of all conics whose co	entre lie at the origin is of order:
	(A) 2	(B) 3
	(C) 4	(D) None of these
2.	The differential equation representing the famil	ly of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter,
	is of:	
	(A) order = 1	(B) order =2
	(C) order = 3	(D) degree = 4
3.	The degree of differential equation $\left(\frac{dy}{dx}\right)^2 + 3$	$\left(\frac{dy}{dx}\right)^3 = x^2 \log\left(\frac{x^2 y}{dx^2}\right)$ is
	(A) 1	(B) 2
	(C) 3	(D) none of these
4.	If $y_1(x)$ and $y_2(x)$ are two solutions of $\frac{dy}{dx} + f(x)$	x) $y = r(x)$ then $y_1(x) + y_2(x)$ is solution of
	(A) $\frac{dy}{dx} + f(x)y = 0$	(B) $\frac{dy}{dx} + 2f(x)y = r(x)$
	(C) $\frac{dy}{dx} + f(x)y = 2r(x)$	(D) $\frac{dy}{dx} + 2f(x)y = 2r(x)$
5.	The curve satisfying the equation $y_1 = \frac{y^2 - 2x}{y^2 + 2x}$	$\frac{y-x^2}{y-x^2}$ passing through $(1,-1)$ is a:
	(A) circle	(B) straight line
	(C) hyperbola	(D) ellipse
6.	The value of $\lim_{x\to\infty} y(x)$ obtained from the diffe	rential equation $\frac{dy}{dx} = y - y^2$, where $y(0) = 2$ is:
	(A) zero	(B) 1
	(C) ∞	(D) none of these
7.	As $x \to \infty$, y has no value. If $x^2 + y^2 = 1$, then	
7.		$\sim 1.4 \times 10^2$
	(A) $yy'' - 2(y')^2 + 1 = 0$	(B) $yy'' + (y')^2 + 1 = 0$
	(C) $x^2 + y^2 - 2y = 0$	(D) none of these
8.	If $\frac{dy}{dx} = ky$, then y is (are):	
	(A) ce^{-kx}	(B) ce^{kx}
	(C) $\frac{\text{kxy}^2}{\text{z}}$	(D) $e^{kx} + c$
9.	The differential equation $(x + y)dx + x dy = 0$ i	s:

The solution of differential equation $(\cos x) \cos y \, dx + \sin x$. $\sin y \, dy = 0$ is :

(A) homogeneous but not linear (B) linear but not homogeneous (C) both homogeneous and linear (D) neither homogeneous nor linear

10.

11.	(A) third (C) first	 (B) sec x - sec y = c (D) cos x = c sin y 2 = Ax + B gives the differential equation of order: (B) zero (D) second
12.	The solution of $\frac{dy}{dx} = 2^{y-x}$ is: (A) $\frac{1}{2^x} - \frac{1}{2^y} = k$	(B) $\frac{1}{2^x} + \frac{1}{2^y} = k$
13.	(C) $2^x + 2^y = k$ If $xdy = y(dx + ydy)$, $y(1) = 1$ and $y(x) > 0$, then (A) 3 (C) 1	(D) $2^x - 2^y = k$
14.	Integrating factor of differential equation cos x	$\frac{dy}{dx} + y \sin x = 1$ is
	(A) sin x (C) tan x	(B) sec x (D) cos x
15.	Let $f: R \to R$ be a mapping defined by, $f(x) = x$ (A) $(5-x)^{1/3}$	$\frac{3}{5}$, then f (x) is equal to
	(C) 5 - x	(D) $(x-5)^{1/3}$
16.	Function $f: R \to R$, $f(x) = x^2 + x$, is: (A) one-one onto (C) many-one onto	(B) one—one into (D) many one into
17.	The domain of the function $f(x) = \frac{1}{\sqrt{x^2 - x^2}}$ is	
	$(A) (0, \infty)$ $(C) (-\infty, \infty)$	(B) $(-\infty, 0)$ (D) none of these
18.	The range of the function $f(x) = \tan \sqrt{\frac{\pi^2}{9}} - x^2$ i	s:
	$(A) \left[0, \sqrt{3}\right]$	(B) $\left(0,\sqrt{3}\right)$
	(C) $\left[0,\sqrt{3}\right)$	(D) $\left(0,\sqrt{3}\right]$
19.	$\lim_{x \to 0} \frac{a^{\sin x} - 1}{b^{\sin x} - 1} =$	
	(A) $\frac{\log a}{\log b}$	(B) $\frac{\log b}{\log a}$
	(C) $\frac{a}{b}$	(D) $\frac{b}{a}$
20.	If $f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$, when $x \neq \frac{\pi}{2}$ and $f(\frac{\pi}{2}) = \lambda$,	then f(x) will be a continuous function at $x = \frac{\pi}{2}$, when $\lambda =$
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$
	(C) $\frac{1}{8}$	(D) none
21.	The value of the derivative of $ x-1 + x-3 $ a	
	(A) – 2 (C) 2	(B) 0 (D) not defined
22.	For the function $f(x) = e^x$, $a = 0$, $b = 1$, the value (A) $\log x$ (C) 0	of c in mean value of theorem will be : (B) log (e-1) (D) 1

- The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets the x-axis at: 23.
 - (A) $\frac{1}{2}$

(B) - 2

(C) $-\frac{1}{2}$

- (D) 1
- The smallest vale of $x^2 3x + 3$ in the interval $\left(-3, \frac{3}{2}\right)$ is 24.
 - (A) $\frac{3}{4}$

(B) 5

(C) - 15

- (D) 20
- The minimum value of the function f(x) = 2|x-2|+5|x-3|, 25.
 - (A)3

(C) 5

- (D) 7
- The value of $\int \frac{x^2 \tan^{-1}(x^3)}{1+x^6} dx$ will be 26.
 - (A) $\frac{1}{6} \tan^{-1} (x^3) + C$

(C) $\frac{1}{6} \left(\tan^{-1} x^3 \right)^3 + C$

- $\int \frac{\mathrm{dx}}{\sqrt{2x-x^2}} =$ 27.

 - (A) $\cos^{-1}(x-1) + c$ (C) $\cos^{-1}(1+x) + c$

- (B) $\sin^{-1}(x-1) + c$ (D) $\sin^{-1}(1-x) + c$

- $\int \frac{xe^x}{(x+1)^2} dx =$ 28.
 - (A) $\frac{e^x}{1+x}+C$

(B) $\frac{xe^x}{(1+x)}$ + C

(C) $\frac{e^{x}}{(1+x)^{3}} + C$

- (D) $\frac{e^{x}}{(1+x)^{2}} + C$
- If f(a x) = f(x), then $\int_{a}^{a} x f(x) dx =$ 29.
 - (A) $\frac{a}{2}\int_{0}^{a}f(x) dx$

(B) $a \int f(x) dx$

(C) $\frac{a^2}{2} \int_0^a f(x) dx$

(D) none of these

- $\int |(1-x)| dx$ equals **30.**
 - (A) 2

(B) 0

(C) 2

- (D) 4
- If [x] denotes greatest integer $\leq x$, then $\int [|x-3|] dx =$ 31.
 - (A) 1

(B) 2

(C) 4

(D) 8

(A)
$$2I_1 = I_2$$

(B)
$$I_1 = I_2$$

(C)
$$I_1 = 2I_2$$

(B)
$$I_1 = I_2$$

(D) $I_1 + I_2 = 0$

33.
$$\lim_{n\to\infty} \left[\frac{n+1}{n^2+1^2} + \frac{n+2}{n^2+2^2} + \frac{n+3}{n^2+3^2} + \ldots + \frac{1}{n} \right]$$
 is equal to

(A)
$$\frac{\pi}{4} + \frac{1}{2} \log 2$$

(B)
$$\frac{\pi}{4} - \frac{1}{2} \log 2$$

(C)
$$-\left(\frac{\pi}{4} + \frac{1}{2}\log 2\right)$$

(D) none of these

The area bounded by the parabola $y^2 = x$, the line y = 4 and y-ax 34.

(A)
$$\frac{16}{3}$$

(B)
$$\frac{32}{2}$$

(C)
$$\frac{64}{3}$$

The area of the curve $xy^2 = a^2 (a - x)$ bounded by y-axis is 35.

(A)
$$\pi a^2$$

(B)
$$2\pi a^2$$

(C)
$$3\pi a^2$$

(D)
$$4\pi a^2$$

Volume V₁ ml of 0.1 M K₂Cr₂O₇ is needed for complete oxidation of 0.678 g N₂H₄ in acidic medium. The **36.** volume of 0.3 M KMnO₄ needed for same oxidation in acidic medium will be

$$(A) \frac{2}{5} V_1$$

(B)
$$\frac{5}{2}$$
 V₁

(C)
$$113 \text{ V}_1$$

(D) can't say

The molar ratio of Fe⁺⁺⁺ in a mixture of FeSO₄ and Fe₂(SO₄)₃ having equal number of sulphate ion in 37. both ferrous and ferric sulphate is

(A) 1 : 2

(B) 3:2

(C) 2:3

(D) can't be determined

38. How many ml of 0.3 M K₂Cr₂O₇ (acidic) is required for complete oxidation of 5 ml of 0.2 M SnC₂O₄ solution

(A) 3.33 ml

(B) 2.22 ml

(C) 1.1 ml

(D) 4.44 ml

The normality of 10 ml of a '20 V' H₂O₂ is 39.

(A) 1.79

(B) 3.58

(C) 60.68

(D) 6.86

40. The maximum number of hydrogen bonds in which a water molecule can participate is:-

(A) 1

(B) 2

(C)3

(D) 4.

The IF₄ ions observed to be square planar. What kind of hybrid orbital are used by I in IF₄? 41.

(B) sp³

(D) sp^3d^2 .

The electronic configuration of an element 'X' is $1s^2 2s^2 2p^6 3s^2 3p^3$. The formula of the most probable 42. compound this element will form with calcium, Ca, is

(A) CaX

(B) Ca_2X_3

(C) Ca₃X₂

(D) CaX₂.

Which of the following statement is correct about O_2 , O_2^+ , O_2^- and O_2^{2-} 43.

- (A) Bond order of O_2 is greater than O_2^+ whereas less than O_2^- ,.
- (B) Bond order of O_2^{2-} is less than that of O_2^+ whereas greater than that of O_2 .
- (C) Bond order of O_2^+ is greater than that of O_2 , O_2^- and O_2^{2-} .
- (D) None of these

44.	Evaluate the following ratios for the energy of th	ne electron in a particular orbit :	
	[Kinetic : Potential] and [Total : Kinetic]	F	
	(A) $[1:-2]$ and $[-1:1]$	(B) [1:2] and [1:1]	
	(C) [1:1] and [1:1]	(D) [1:2] and [1:2]	
45.	If the I.E of He ⁺ is 54.4 eV then	,	
	 (A) I.E of H is 13.6 eV and that of Li⁺² 122.4 eV (B) I.E. of H is 13.6 eV and that of Li⁺² cannot be determined 		
	(C) I.E. of H is 13.6 eV and that of Li $^{+2}$ is 27.2 e		
	(D) all of the above are wrong		
46.	What is the radius ratio for 2 nd orbit of Li ⁺² ion a	and 3 rd orbit of Be ⁺³ ion ²	
	(A) 3:1	(B) 16:27	
	(C) 4:9	(D) 3:4	
47.		onds to increasing values of energy, i.e., $E_A < E_B < E_C$. If λ_1,λ_2	
		esponding to the transitions C to B, B to A and C to A	
	respectively, which of the following statement is	s correct:	
		C	
	λ_1	В	
		λ ₂ λ ₃	
		A	
	(A) $\lambda_3 = \lambda_1 + \lambda_2$	$\lambda_1 \lambda_2 - \lambda_1 \lambda_2$	
	$(A) N_3 - N_1 + N_2$	$(\mathbf{B}) \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	
	(C) $\lambda_1 + \lambda_2 + \lambda_3 = 0$	(D) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$	
48.	and the second s	rough a porous plug of 1/6th of the speed of hydrogen under	
101	identical conditions is	rough a porous plug of from of the speed of hydrogen under	
	(A) 27	(B) 72	
	(C) 36	(D) 48	
49.		before it can be liquefied by compression is called:	
	(A) Boyle temp.	(B) Critical temp.	
50.	(C) Liquefication temp.	(D) Inversion temp. s A and B. The vessel A has circular orifice while vessel B has	
30.		rifice of vessel A. The ratio of the rates of diffusion of the gas	
	from vessel A to vessel B, assuming same temperature and pressure is		
	$(A) \pi$	<u> </u>	
	(C) 1:1	(D) 2:1	
51.	The rate diffusion of SO ₂ , CO	<u> </u>	
	(A) $PCl_3 > SO_3 > SO_2 > CO_2$	(B) $SO_2 > SO_3 > PCl_3 > CO_2$	
52.	(C) $CO_2 > SO_2 > PCl_3 > SO_3$	(D) $CO_2 > SO_2 > SO_3 > PCl_3$ reaction by 25%. The temperature at which rate of	
32.	uncatalysed reaction will be equal to that of the		
	(A) 127°C	(B) 300°C	
	(C) 37°C	(D) None of these	
53.	The decay constant of a radioactive element is 0	.0693 min ⁻¹ . The time required to reduce the activity of the	
	sample to 1/8th of its initial activity will be.		
	(A) 30 min	(B) 20 min	
54.	(C) 10 min	(D) None of these reaction is 2 minutes, then the time after which the reaction is	
34.	99.9% completed is	reaction is 2 minutes, then the time after which the reaction is	
	(A) 4 minutes	(B) 6 minutes	
	(C) 8 minutes	(D) 10 minutes	
55.		ward and reverse reactions and the reaction is known to be	
	exothermic then	(D) E < E	
	$(A) E_f > E_b$ $(C) E_f = E_b$	(B) $E_f < E_b$ (D) $E_f \approx E_b$	
	(C) $L_f - L_b$	(D) $D_{1} \sim D_{0}$	

5 6	Which are of the following reactions at assilibr	iven with all apparents and much vota in the apparent above
56.	would be uneffected by an increase in pressure.	ium, with all reactants and products in the gaseous phase,
	(A) $N_2 + 3H_2 \Longrightarrow 2NH_3$	(B) $2CO + O_2 \longrightarrow 2CO_2$
	(A) $N_2 + 3H_2 \longrightarrow 2NH_3$ (C) $2H_2 + O_2 \longrightarrow 2H_2O$	(D) $N_2 + O_2 \longrightarrow 2NO$
57.	For the reaction $PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$, the	value of K_C at 250°C is 26 mol ⁻¹ /litre. The value of K_p at this
	temperature will be	(D) 0.57 · -1
	(A) 0.61 atm ⁻¹ (C) 0.85 atm ⁻¹	(B) 0.57 atm^{-1} (D) 0.46 atm^{-1}
58.		equilibrium when temperature is raised, given that its ΔH is
50.	positive	equinoriam when temperature is ruised, given that its ziri is
	(A) More of the products are formed	(B) Less of the products are formed
	(C) More of the reactants are formed	(D) It remains in equilibrium
50	F 4) K 10-10-0 1050G At 1050G th 1 CK C th
59.	For the reaction, $2NO_2(g) \leftarrow 2NO(g) + O_2(g)$ reaction.	g), $K_C = 1.8 \times 10^{-6}$ at 185°C. At 185°C, the value of K_C for the
	$NO(g) + \frac{1}{2}O_2(g) \Longrightarrow NO_2(g)$ is	
	(A) 0.9×10^6	(B) 7.5×10^2
	(C) 1.95×10^{-3}	(D) 1.95×10^3
60.		set after the addition of equal number of mole of N ₂ and H ₂
	equilibrium state is formed which of the following	
	(A) [H2] = [N2]	(B) $[H_2] < [N_2]$
<i>C</i> 1		(D) $[H_2] > [NH_3]$
61.	mass of $N_2O_{4(g)}$ decomposes to $NO_{2(g)}$. The result	container under one atm. It is heated to 600K when 20% by
	(A) 1.2 atm	(B) 2.4 atm
	(C) 2.0 atm	(D) 1.0 atm
62.		6 mol of H ₂ react to give NH ₃ according to the equation.
		erature and pressure. Then the ratio of the final volume to the
	initial volume of gases are (A) 4:5	(B) 5:4
	(C) 7:10	(D) 8:5
63.	For the reaction	
		brium constant is K _p , then the equilibrium constant for the
	reaction $2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$ would	be
	(A) K_p^2	(B) $2/K_p$
	(C) $1/K_n^2$	(D) $1/\sqrt{K_p}$
64.	Given the following reaction at equilibrium	, , , , , , ,
0	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	
	Some inert gas is added at constant volume. Pred	dict which of the following facts will be affected?
	(A) more of NH ₃ (g) is produced	
	(B) less of NH ₃ (g) is produced	A. A. 111 .
	(C) no affect on the degree of advancement of th(D) K_P of the reaction is increased	te reaction at equinorium
65.	For the reaction $Cu(s) + 2Ag^{+}(ag) \rightleftharpoons Cu^{2+}(ag)$	eq) + $2Ag(s)$ the equilibrium constant, K_c is given by
	(A) $\frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}$	(B) $\frac{[Cu][2Ag]}{[Cu^{2+}][2Ag^{+}]}$
	9 -	
	(C) $\frac{[Cu^{2+}]}{[Ag^+]^2}$	(D) $\frac{[Ag^+]^2}{[Cu^{2+}]}$
66.		ially the mole ratio was $1:3$ of N_2 to H_2 . At equilibrium 50%
00.		was P, the partial pressure of NH_3 at equilibrium was
	(A) P/3	(B) P/4
	(C) P/6	(D) P/8

67.	Two systems $PCl_{5(g)} \rightleftharpoons PCl_{3(g)}$	$_{\rm g)}$ + Cl _{2(g)} and COCl _{2(g)} \Longrightarrow CO _(g) + Cl _{2(g)} are simultaneously in equilibrium in
	a vessel at constant volume.	If some CO is introduced into the vessel then at the new equilibrium the
	concentration of (A) PCl ₅ is greater	(B) PCl ₃ remains unchanged
	(C) PCl ₅ is less	(D) Cl ₂ is greater
68.	At temperature, T, a	compound $AB_{2(g)}$ dissociates according to the reaction
		a degree of dissociation x, which is small compared with unity. The expression
	of K_p in terms of x and the total (A) $Px^3/2$	pressure, P is $(B) Px^2/3$
	(C) $Px^3/3$	(D) $Px^2/2$
69.	Concentration of reactants and p	
	$A + 2B \Longrightarrow C + D$ are,	[D] = 0.5; the value of equilibrium constant is
	(A) 75	(B) 150
	(C) 2.5	(D) 750
70.	The expression for K _p for CaCC	$O_3(s) \longrightarrow CaO(s) + CO_2(g)$ is
	(A) $K_p = \frac{P_{CO_2}.P_{CaO}}{P_{CaO_3}}$	(B) $P_{\text{Cao}} \times P_{o_2} = K_p$
	P_{CaO_3}	
	(C) $K_p = P_{CO_2}$	$(D) K_{D} = \frac{P_{CaO}}{}$
	C P CO2	$\overline{P_{CaCO_3}}$
		PHYSICS
		PART – III
71.	If the relation between distance	x and time t is denoted by $t = \alpha x^2 + \beta x$ where α and β are constant quantities,
	the deceleration of the particle i	
	(A) $2\alpha v^3$ (B) βv	
72.	An aeroplane is flying at heigh ground will be	t 'h' with horizontal velocity u. The velocity of a dropped packet on reaching
	(A) $\sqrt{u^2 + 2gh}$	(B) $\sqrt{2gh}$
	(C) 2gh	(B) $\sqrt{2gh}$ (D) $\sqrt{u^2 - 2gh}$
5 2		$\sqrt{2}$ gx^2 $dx = 1$ $dx = 1$
73.	The equation of a projectile is y	$\sqrt{3}x - \frac{gx^2}{2}$ the angle of projection is
	(A) 30°	(B) 60°
74.	(C) 45° An isolated particle of mass m i	(D) None of these s moving in horizontal plane (x-y), along the x-axis, at a certain height above
/ - 1 •		s into two fragment of masses m/4 and 3m/4. An instant later, the smaller
	fragment is at $y = +15$ cm. the la	arger fragment at this instant is at :
	(a) $y = -5$ cm	(b) $y = +20 \text{ cm}$
	(c) $y = +5 \text{ cm}$	(d) $y = -20 \text{ cm}$
75.		d 4 kg are connected by a spring of negligible mass and placed on a frictionless
		gives a velocity of 14 m/s to the heavier block in the direction of the lighter
	block. The velocity of the cente	
	(a) 30 m/s	(b) 20 m/s
	(c) 10 m/s	(d) 5 m/s
76.		with constant velocity v_0 . Velocity
		3 is (Assume all pulleys and strings
	are ideal) (A) $v_0/2$ left	(B) $v_0/2$ right A B V_0
	(C) $3/2v_0$ right	(D) $3/2v_0$ left

77.	A long spring is stretched by 2 cm, its potential energy stored in it will be -	l energy is U. If the spring is stretched by 10 cm, the potential
	(A) U/25	(B) U/5
	(C) 5U	(D) 25U
78.		ght line under the action of force of 5N. If the work done is 25
	joules, then the angle which the force makes with	
	(A) 0°	(B) 30°
	(C) 60°	(D) 0°
79.	A body of mass m kg is lifted by a man to a hei	ght of one meter in 30 sec. Another man lifts the same mass to
	the same height in 60 sec. The work done by the	em are in the ratio
	(A) 1:2	(B) 1:1
	(C) 2:1	(D) 4:1
80.		a horizontal plane with one end hinged to a vertical axis. A
	horizontal force of $F = \frac{Mg}{2}$ is applied perpendicular.	dicular to the rod at a distance $\frac{3L}{2}$ from the hinged end. The
	angular acceleration of the rod will be	
	$(A) \frac{4g}{5L}$	(B) $\frac{3g}{g}$
		41
	(C) $\frac{9g}{16L}$	(D) $4g$
	$\frac{16L}{}$	$\frac{1}{3L}$
81.	A circular disc X of radius R is made from an	iron plate of thickness t , and another plate Y of radius $4R$ is
	made from an iron plate of thickness t/4. The rai	to of moment of inertia I_Y/I_X is
	(A) 32	(B) 16
	(C) 1	(D) 64
82.	A cord is wound round the circumference of wh	eel of radius r. The axis of the wheel is horizontal and moment
	of inertia about it is I. A weight mg is attached	to the end of the cord and falls from rest. After falling through
	a distance h, the angular velocity of the wheel w	vill be
	(A) $2gh$	$(R) \left[2mgh \right]^{1/2}$
	(A) $\sqrt{\frac{2gh}{I+mr}}$	(B) $\left[\frac{2mgh}{1+mr^2}\right]^{1/2}$
	(C) $\left[\frac{2mgh}{1+2mr^2}\right]^{1/2}$	(D) $\sqrt{2gh}$
	[· · = · · · ·]	
83.		g the x-axis with a speed of 5.00 ms ⁻¹ . The magnitude of its
	momentum is recorded as	
	(A) $17.565 \mathrm{kg ms}^{-1}$	(B) $17.56 \mathrm{kg} \mathrm{ms}^{-1}$
	(C) $17.57 \mathrm{kg}\mathrm{ms}^{-1}$	(D) $17.6 \mathrm{kg}\mathrm{ms}^{-1}$
84.	Consider a uniform square plate of side a and	I mass m. The moment of inertia of this plate about an axis
	perpendicular to its plane and passing through o	<u> </u>
	(Λ) 1 mg ²	$(R) = \frac{7}{ma^2}$
	$(A) \frac{1}{12} ma^2$	$(B) \frac{7}{12} \text{ma}^2$
	(C) $\frac{2}{3}$ ma ²	$(D) \frac{5}{6} ma^2$
	O .	0
85.		ed of 2.00 ms ⁻¹ on a smooth surface. It strikes another mass of
	1.00 kg and then they move together as a single	•
	(A) 1.00 J	(B) 0.67 J
06	(C) 0.34 J	(D) 0.16 J
86.		and the earth. The mass of the satellite is very small compared
	to the mass of the earth: (A) The acceleration of S is always directed tow	eards the centre of the certh
	(A) The acceleration of S is always directed tow	re of the earth changes in direction, but its magnitude remains
	constant.	22 22 22 cm an enanges in anceston, out its magnitude remains
	(C) The total mechanical energy of S varies peri	odically with time.
	(D) The linear momentum of S remains constan	

87.	Two particles of mass m_1 and m_2 are initially at gravitational attraction, when their separation is	rest at infinite distance. Find their velocity of approach due to d:
	2G(m + m)	G(2m + m)
	(A) $\sqrt{\frac{2G(m_1 + m_2)}{d}}$	(B) $\sqrt{\frac{G(2m_1 + m_2)}{3d}}$
	(C) $\sqrt{\frac{3G(2m_1 + m_2)}{d}}$	(D) $\sqrt{\frac{G(m_1 + m_2)}{d}}$
	y u	y u
88.		nore massive than the earth and its radius is 10 times smaller.
	Given that the escape velocity from the earth i	is 11kms ⁻¹ , the escape velocity from the surface of the planet
	would be	
	(A) 11kms ⁻¹	(B) 110kms ⁻¹
	$(C) 0.11 \text{kms}^{-1}$	(D) $1.1 \mathrm{kms^{-1}}$
89.	A small planet is revolving around a very m	assive star in a circular orbit of radius R with a period of
		between the planet and the start were proportional to
	R ^{-5/2} , then T would be proportional to	
	(A) $R^{3/2}$	$(B) R^{3/5}$
	(C) $R^{7/2}$	(B) $R^{3/5}$ (D) $R^{7/4}$
90.	If the both the mass and the radius or earth decre	ease by 1%, the value of the acceleration due to gravity will
	(A) decrease by 1%	(B) increase by 1%
	(C) increase by 2%	(D) remain unchanged
91.		e the surface of the earth is the same as at a depth d below the
		smaller than the radius of earth, then which of the following is
	correct?	
	(A) $d = 2h$	(B) $a = n$
	(C) $d = \frac{h}{2}$	(B) $d = h$ (D) $d = \frac{3h}{2}$
	\mathcal{L}	2
92.		of a uniform sphere of mass 100 kg and radius 10 cm. Find the
		between them to take the particle far away from the sphere.
	(you may take $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$) (A) $6.67 \times 10^{-9} \text{ J}$	(D) ((710:10 I
	(A) 6.67×10^{-3} J (C) 13.34×10^{-10} J	(B) $6.67 \times 10^{-10} \text{ J}$ (D) $3.33 \times 10^{-10} \text{ J}$
93.	Average density of the earth	(D) 3.33 × 10 J
93.	(A) is directly proportional to g	(B) is inversely proportional to g
	(C) does not depend on g	(D) is a complex function of g
94.		e of the earth of radius R with an initial speed v. If atmospheric
	resistance is neglected, the maximum height atta	
	n -	D
	(A) $h = \frac{R}{\left(\frac{2gR}{v^2} - 1\right)}$	(B) $h = \frac{R}{\left(\frac{2gR}{v^2} + 1\right)}$
	$\left(\frac{-2S^2}{V^2}-1\right)$	$\left(\frac{-8^{2}}{v^{2}}+1\right)$
	(2°D	(2 _e P)
	(C) $h = R\left(\frac{2gR}{v^2} - 1\right)$	(D) $h = R\left(\frac{2gR}{v^2} + 1\right)$
95.		mass M and radius R is rotating at an angular frequency ω. If
<i>)</i> 5.	an object is placed at its equator, it will remain s	
	(A) $M > \frac{R\omega}{G}$	(B) $M > \frac{R^2 \omega^2}{G}$
	3	3
	(C) $M > \frac{R^3 \omega^2}{G}$	(D) $M > \frac{R^2 \omega^3}{G}$
06	O	0
96.	have been	ere half its present value, the number of days in a year would
	(A) 64.5	(B) 129
	(C) 182.5	(D) 730

97. Two bodies of masses m₁ and m₂ are initially at rest at infinite distance apart. They are then allowed to move toward each other under mutual gravitational attraction. Their relative velocity of approach at a separation distance r between them is

$$(A) \left[\frac{2G \left(m_1 + m_2\right)}{r} \right]^{1/2}$$

(B)
$$\left[\sqrt{\frac{2G}{r}} \frac{\left(m_1 + m_2\right)}{2}\right]^{1/2}$$

$$(C) \left[\frac{r}{2G(m_1 m_2)} \right]^{1/2}$$

$$(D) \left(\frac{2G}{r} m_1 m_2\right)^{1/2}$$

- 98. A satellite in force-free space sweeps stationary interplanetary dust at a rate dM/dt = αv , where M is the mass and v is the velocity of the satellite and α is a constant. The acceleration of the satellite is
 - (A) $\frac{-2\alpha v}{M}$

(B) $\frac{-\alpha v^2}{M}$

(C) $\frac{+\alpha v^2}{M}$

- $(D) -\alpha v$
- 99. A person brings a mass of 1 kg from infinity to a point A. Initially, the mass was at rest but it moves at a speed of 3 m/s as it reaches A. The workdone by the person on the mass is -5.5 J. The gravitational potential at A is
 - (A) -1 J/kg

(B) 4.5 J/kg

(C) -5.5 J/kg

- (D) 10 J/kg
- 100. In a gravitational force field a particle is taken from A to B along different paths as shown in the figure. Then
 - (A) work done along path I is more
 - (B) work done along path III is less
 - (C) work done along path IV is more
 - (D) work done along all paths is the same

- 101. The horizontal speed with which a satellite must be projected at 316 km above the surface of the earth so that it will have a circular orbit about the earth $(R = 6400 \text{ km}, g = 10 \text{ m/s}^2)$ is
 - (A) 7500 m/s

(B) 7800 m/s

(C) 8000 m/s

- (D) 3200 m/s
- 102. The angular momentum of the earth revolving round the sun is proportional to Rⁿ where R is the distance between the earth and the sun. The value of n is
 - (A) 0.5

(B) 1.0

(C) 1.5

- (D) 2.0
- 103. A planet has twice the density of earth but the acceleration due to gravity on its surface is exactly the same as on the surface of earth. Its radius in terms of earth R will be
 - (A) R/4

(B) R/2

(C) R/3

- (D) R/8
- **104.** Consider the situation shown in figure. Initially the spring is unstretched when the system is released from rest. Assuming no friction in the pulley, the maximum elongation of the spring is
 - (A) $\frac{m}{k}$

(B) $\frac{2mg}{k}$

(C) $\frac{3\text{mg}}{\text{k}}$

(D) $\frac{4mg}{k}$

- **105.** A mass 2 kg is tied to one end of a light rod of length *l*. What horizontal velocity should be imparted to the lower end so that it may just take up the horizontal position?
 - (A) $\sqrt{2gl}$

(B) \sqrt{gl}

(C) $\sqrt{\frac{12}{5}gl}$

(D) None of these