Code No: R05210504

II B.Tech I Semester Regular Examinations, November 2008 DIGITAL LOGIC DESIGN (Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering) Time: 3 hours Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) Explain different methods used to represent negative numbers in binary system. 6
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $[5 \times 2]$
 - i. 11010 10110
 - ii. 11011 1001
 - iii. 100 110100
 - iv. 1010101 1010101
 - v. 11 1101.
- 2. (a) Convert the following expressions in to sum of products and product of sums.
 - i. (AB + C) (B + C'D)
 - ii. x' + x(x + y')(y + z').
 - (b) Obtain the Dual of the following Boolean expressions. [8+8]
 - i. (AB' + AC')(BC + BC')(ABC)
 - ii. AB'C + A'BC + ABC
 - iii. (ABC)'(A + B + C)'
 - iv. A + B'C (A + B + C').
- 3. (a) Construct K-map for the following expression and obtain minimal SOP expression. Implement the function with 2-level NAND -NAND form. $f(A, B, C, D) = (A + C + D) (A + B + \overline{D}) (A + B + \overline{C}) (\overline{A} + B + \overline{D}) (\overline{A} + B + \overline{D})$
 - (b) Implement the following Boolean function F using the two level form: [8+8]
 - i. NAND-AND
 - ii. AND-NOR $F(A, B, C, D) = \Sigma 0, 1, 2, 3, 4, 8, 9, 12$
- 4. (a) Implement 64×1 multiplexer with four 16×1 and one 4×1 multiplexer. (Use only block diagram).
 - (b) A combinational logic circuit is defined by the following Boolean functions. $F_1 = \overline{ABC} + AC$ $F_2 = A\overline{BC} + \overline{AB}$ $F_3 = A\overline{B}C + AB$

Design the circuit with a decoder and external gates. [8+8]

Max Marks: 80

Code No: R05210504

- Set No. 3
- 5. A sequential circuit with 3 D-flip-flops A, B and C has only one input 'X' and one output 'X' with following relationship $D_A = B \oplus C \oplus X$, $D_B = A$, $D_C = B$
 - (a) Draw the logic diagram of the circuit.
 - (b) Obtain logic diagram, state table and state diagram. [16]
- 6. Draw the sequential circuit for serial adder using shift registers, full adder and D-FF. Explain its operation with state equations and state table . [16]
- 7. Derive the PLA programming table and the PLA structure for the combinational circuit that squares a 3- bit number. Minimize the number of product terms. [16]
- 8. (a) What do you mean by hazard? Classify and explain.
 - (b) Draw the logic diagram of the product of sums expression: $Y = (x_1 + x_2') (x_2 + x_3)$. Show that there is a 0-hazard when x_1 and x_3 are equal to 0 and x_2 goes from 0 to 1. Find a way to remove the hazard by adding one or more OR gate. [8+8]
