II B.Tech I Semester Regular Examinations, November 2008 DIGITAL LOGIC DESIGN

(Common to Computer Science \& Engineering, Information Technology and Computer Science \& Systems Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain different methods used to represent negative numbers in binary system.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
i. 11010-10110
ii. 11011-1001
iii. 100-110100
iv. 1010101-1010101
v. 11-1101.
2. (a) Convert the following expressions in to sum of products and product of sums.
i. $(A B+C)\left(B+C^{\prime} D\right)$
ii. $x^{\prime}+x\left(x+y^{\prime}\right)\left(y+z^{\prime}\right)$.
(b) Obtain the Dual of the following Boolean expressions.
i. $\left(\mathrm{AB}^{\prime}+\mathrm{AC}^{\prime}\right)\left(\mathrm{BC}+\mathrm{BC}^{\prime}\right)(\mathrm{ABC})$
ii. $\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{ABC}$
iii. $(\mathrm{ABC})^{\prime}(\mathrm{A}+\mathrm{B}+\mathrm{C})^{\prime}$
iv. $A+B^{\prime} C\left(A+B+C^{\prime}\right)$.
3. (a) Construct K-map for the following expression and obtain minimal SOP expression. Implement the function with 2-level NAND -NAND form. $f(A, B, C, D)=(A+C+D)(A+B+\bar{D})(A+B+\bar{C})(\bar{A}+B+\bar{D})(\bar{A}+B+\bar{D})$
(b) Implement the following Boolean function F using the two - level form: $[8+8]$
i. NAND-AND
ii. AND-NOR $F(A, B, C, D)=\Sigma 0,1,2,3,4,8,9,12$
4. (a) Implement 64×1 multiplexer with four 16×1 and one 4×1 multiplexer. (Use only block diagram).
(b) A combinational logic circuit is defined by the following Boolean functions.
$F_{1}=\overline{A B C}+A C$
$F_{2}=A \overline{B C}+\bar{A} B$
$F_{3}=A \bar{B} C+A B$
Design the circuit with a decoder and external gates.

Code No: R05210504

Set No. 3

5. A sequential circuit with 3 D-flip-flops A, B and C has only one input ' X ' and one output ' X ' with following relationship
$D_{A}=B \oplus C \oplus X, \quad D_{B}=A, \quad D_{C}=B$
(a) Draw the logic diagram of the circuit.
(b) Obtain logic diagram, state table and state diagram.
6. Draw the sequential circuit for serial adder using shift registers, full adder and D-FF. Explain its operation with state equations and state table .
7. Derive the PLA programming table and the PLA structure for the combinational circuit that squares a 3 - bit number. Minimize the number of product terms. [16]
8. (a) What do you mean by hazard? Classify and explain.
(b) Draw the logic diagram of the product of sums expression: $\mathrm{Y}=\left(x_{1}+x_{2}{ }^{\prime}\right)\left(x_{2}+x_{3}\right)$. Show that there is a 0 -hazard when x_{1} and x_{3} are equal to 0 and x_{2} goes from 0 to 1 . Find a way to remove the hazard by adding one or more OR gate.
