ELECTRONICS \& COMMUNICATION ENGINEERING

ONE MARK QUESTIONS

1. In the circuit of the figure, the voltage $v(t)$ is

(a.) $e^{a t}-e^{b t}$
(b.) $\mathrm{e}^{\mathrm{at}}+\mathrm{e}^{\mathrm{bt}}$
(c.) $a^{\mathrm{et}}-\mathrm{b}^{\mathrm{et}}$
(d.) $a^{e t}+b e^{b t}$
2. In the circuit of the figure, the value of the voltage source E is

(a.) -16 V
(b.) 4 V
(c.) -6 V
(d.) 16 V
3. The circuit of the figure represents a

(a.) low pass filter
(b.)high pass filter
(c.) band pass filter
(d.)band reject filter
4. In the differential amplifier of the figure, if the source resistance of the current source I_{EE} is infinite, then the common-mode gain is

(a.) zero
(b.) infinite
(c.) indeterminate
(d.) $\frac{V_{\text {in } 1}+V_{\text {in } 2}}{2 V_{T}}$
5. In the circuit of the figure, V_{0} is

(a.) -1 V
(b.) 2 V
(c.) +1 V
(d.) +15 V
6. Introducing a resistor in the emitter of a common amplifier stabilizes the dc operating point against variations in
(a.) only the temperature
(b.) only the β of the transistor
(c.) both temperature and β
(d.)none of the above
7. The current gain of a bipolar transistor drops at high frequencies because of
(a.) transistor cap acitances
(b.) high current effects in the base
(c.) parasitic inductive elements
(d.) the Early effect
8. If the op-anp in the figure, is ideal, then v_{0} is

(a.) zero
(b.) $\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \sin \omega \mathrm{t}$
(c.) $-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \sin \omega \mathrm{t}$
(d.) $\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \sin \omega \mathrm{t}$
9. The configuration of the figure is a

(a.) precision integrator
(b.)Hartley oscillator
(c.) Butterworth high pass filter
(d.) Wien-bridge oscillator
10. Assume that the op-amp of the figure is ideal. If v_{i} is a triangular wave, then v_{0} will be

(a.) square wave
(b.)triangular wave
(c.) parabolic wave
(d.) sine wave
11. The most commonly used amplifier in sample and hold circuits is
(a.) a unity gain inverting amplifier
(b.) a unity gain non-inverting amplifier
(c.) an inverting amplifier with a gain of 10
(d.) an inverting amplifier with a gain of 100
12. An 8 bit successive approximate analog to digital converter has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is $20 \mu \mathrm{~s}$. The conversion time for a 2 V inp ut will be
(a.) $10 \mu \mathrm{~s}$
(b.) $20 \mu \mathrm{~s}$
(c.) $40 \mu \mathrm{~s}$
(d.) $50 \mu \mathrm{~s}$
13. The number of comparators in a 4bit flash ADC is
(a.) 4
(b.) 5
(c.) 15
(d.) 16
14. For the logic circuit shown in the figure, the required input condition $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ to make the output $(\mathrm{X})=1$ is

(a.) $1,0,1$
(b.) $0,0,1$
(c.) $1,1,1$
(d.) $0,1,1$
15. Given that
$L[f(t)]=\frac{s+2}{s^{2}+1}, L[g(t)]=\frac{s^{2}+1}{(s+3)(s+2)}$,
$h(t) \int_{0}^{t} f(\tau) g(t-\tau) d \tau . L[h(t)]$ is
(a.) $\frac{s^{2}+1}{s+3}$
(b.) $\frac{1}{s+3}$
(c.) $\frac{s^{2}+1}{(s+3)(s+2)}+\frac{s+2}{s^{2}+1}$
(d.) None of the above
16. The Fourier Transform of the signal $\mathrm{x}(\mathrm{t})=e^{-3 t^{2}}$ is of the following form, where A and B are constants:
(a.) $A e^{-B|f|}$
(b.) $A e^{-B f^{2}}$
(c.) $A+B|f|^{2}$
(d.) $A e^{-B f}$
17. A system with an input $x(t)$ and output $y(t)$ is described by the relation: $y(t)=t x(t)$. This system is
(a.) linear and time-invariant
(b.) linear and time varying
(c.) non-linear and time-invariant
(d.)non-linear and time-vary ing
18. The amplitude modulated wave form $s(t)={ }_{C}\left[1+K_{a} m(t)\right] \cos \omega_{C} t$ is fed to an ideal envelope detector. The maximum magnitude of $K_{0} m(t)$ is greater than 1 . Which of the following could be the detector output?
(a.) $A_{c} m(t)$
(b.) $A_{c}^{2}\left[1+K_{a} m(t)\right]^{2}$
(c.) $\left[A_{c}\left[1+K_{a} m(t)\right]\right]$
(d.) $A_{c}\left[1+K_{a} m(t)\right]^{2}$
19. The frequency range for satellite communication is
(a.) 1 KHz to 100 KHz
(b.) 100 KHz to 10 KHz
(c.) 10 MHz to 30 MHz
(d.) 1 GHz to 30 GHz
20. If the diameter of a $\frac{\lambda}{2}$ dipole antenna is increased from $\frac{\lambda}{100}$ to $\frac{\lambda}{50}$, then its
(a.) Bandwidth increases
(b.)Bandwidth decreases
(c.) Gain increases
(d.) Gain decreases
21. The magnitudes of the open-circuit and short-circuit input impedances of a transmission line are 100Ω and 25Ω respectively. The characteristic impedance of the line is,
(a.) 25Ω
(b.) 50Ω
(c.) 75Ω
(d.) 100Ω
22. A TEM wave is incident normally upon a perfect conductor. The E and H fields at the boundary will be, respectively,
(a.) minimu m and minimum
(b.)maximum and maximum
(c.) minimu m and maximum
(d.) maximum and minimum
23. The number of hardware interrupts (which require an external signal to interrupt) present in an 8085 microp rocessor are
(a.) 1
(b.) 4
(c.) 5
(d.) 13
24. In the 8085 microprocessor, the RST6 instruction transfers the program execution to the following location:
(a.) 30 H
(b.) 24 H
(c.) 48 H
(d.) 60 H

TWO MARKS QUESTIONS

25. Use the data of the figure (a). The current i in the circuit of the figure (b)

(a.) -2 A
(b.) 2 A
(c.) -4 A
(d.) +4 A
26. For the circuit in the figure, the voltage v_{0} is

(a.) 2 V
(b.) 1 V
(c.) -1 V
(d.) None of the above
27. A linear time invariant system has an impulse response $e^{2 t}$, fort>0. If initial conditions are 0 and the input is $\mathrm{e}^{3 \mathrm{t}}$, the output for $\mathrm{t}>0$ is
(a.) $e^{3 t}-e^{2 t}$
(b.) $e^{5 t}$
(c.) $\mathrm{e}^{3 \mathrm{t}}+\mathrm{e}^{2 \mathrm{i}}$
(d.)None of the above
28. In the circuit of the figure, assume that the transistor is in the active region. It has a large β and its base-emitter voltage is 0.7 V . The value of I_{C} is

(a.) Indeterminate since R_{C} is not given
(b.) 1 mA
(c.) 5 mA
(d.) 10 mA
29. If the op-amp in the figure has an input offset voltage of 5 mV and an open-loop voltage gain of 10,000 , then v_{0} will be

(a.) 0 V
(b.) 5 mV
(c.) +15 V or -15 V
(d.) +50 V or -50 V
30. For the logic circuit shown in the figure, the simplified Boo lean expression for the output Y is

(a.) $\mathrm{A}+\mathrm{B}+\mathrm{C}$
(b.) A
(c.) B
(d.) C
31. For the 4 bit DAC shown in the figure, the output voltage v_{0} is

(a.) 10 V
(b.) 5 V
(c.) 4 V
(d.) 8 V
32. A sequential circuit using D Flip-Flop and logic gates is shown in the figure, where X and Y are the inputs and Z is the output. The circuit is

(a.) S-R Flip-Flop with inputs $\mathrm{X}=\mathrm{R}$ and $\mathrm{Y}=\mathrm{S}$
(b.) S-R Flip-Flop with inputs $\mathrm{X}=\mathrm{S}$ and $\mathrm{Y}=\mathrm{R}$
(c.) J-K Flip-Flop with inputs $\mathrm{X}=\mathrm{J}$ and $\mathrm{Y}=\mathrm{K}$
(d.) J-K Flip-Flop with inputs $\mathrm{X}=\mathrm{K}$ and $\mathrm{Y}=\mathrm{J}$
33. In the figure, the J and K inputs of all the four Flip-Flips are made high The frequency of the signal at output Y is

(a.) 0.833 KHz
(b.) 1.0 KHz
(c.) 0.91 KHz
(d.) 0.77 KHz
34. One period ($0, \mathrm{~T}$) each of two periodic waveforms W_{1} and W_{2} are shown in the figure. The magnitudes of the nth Fourier series coefficients of W_{1} and W_{2}, for, $\mathrm{n} \geq 1$ odd, are respectively proportional to

(a.) $\left|\mathrm{n}^{-3}\right|$ and $\left|\mathrm{n}^{-2}\right|$
(b.) $\left|\mathrm{n}^{-2}\right|$ and $\left|\mathrm{n}^{-3}\right|$
(c.) $\left|\mathrm{n}^{-1}\right|$ and $\left|\mathrm{n}^{-2}\right|$
(d.) $\left|\mathrm{n}^{-4}\right|$ and $\left|\mathrm{n}^{-2}\right|$
35. Let $u(t)$ be the step function. Which of the waveforms in the figure corresponds to the convolution of $\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-1)$ with $\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$?
(a.)

(b.)

(c.)

(d.)

36. In the figure, the steady state output voltage corresponding to the input voltage $3+4 \sin 100 \mathrm{tV}$ is

(a.) $3+\frac{4}{\sqrt{2}} \sin \left(100 t-\frac{\pi}{4}\right) V$
(b.) $3+4 \sqrt{2} \sin \left(100 t-\frac{\pi}{4}\right) V$
(c.) $\frac{3}{2}+\frac{4}{\sqrt{2}} \sin \left(100 t+\frac{\pi}{4}\right) V$
(d.) $3+4 \sin \left(100 t+\frac{\pi}{4}\right) V$
37. A system described by the transfer function

$$
H(s)=\frac{1}{s^{3}+\alpha s^{2}+k s+3}
$$

The constraints on α and k are,
(a.) $\alpha>0, \alpha k<3$
(b.) $\alpha>0, \alpha k>3$
(c.) $\alpha<0, \alpha \mathrm{k}>3$
(d.) $\alpha>0, \alpha \mathrm{k}<3$
38. In a digital communication system employing Frequency Shift Keying (FSK), the 0 and 1 bit are represented by sine waves of 10 KHz and 25 KHz respectively. These waveforms will be orthogonal for a bit interval of
(a.) $45 \mu \mathrm{sec}$
(b.) $200 \mu \mathrm{sec}$
(c.) $50 \mu \mathrm{sec}$
(d.) $250 \mu \mathrm{sec}$
39. A message $m(t)$ band limited to the frequency f_{m} has a power of P_{m}. The power of the output signal in the figure is

(a.) $\frac{P_{m} \cos \theta}{2}$
(b.) $\frac{P_{m}}{4}$
(c.) $\frac{P_{m} \sin ^{2} \theta}{4}$
(d.) $\frac{P_{m} \cos ^{2} \theta}{4}$
40. The Hilbert transform of $\cos \omega_{1} t+\sin \omega_{2} t$ is
(a.) $\sin \omega_{1} t-\cos \omega_{2} t$
(b.) $\sin \omega_{1} t+\cos \omega_{2} t$
(c.) $\cos \omega_{1} t-\sin \omega_{2} t$
(d.) $\cos \omega_{1} t+\sin \omega_{2} t$
41. In a FM system, a carrier of 100 MHz is modulated by a sinusoidal signal of 5 KHz . The bandwidth by Carson's approximation is 1 MHz . If $\mathrm{y}(\mathrm{t})=$ (modulated waveform) ${ }^{3}$, then by using Carson's approximation, the bandwidth of $\mathrm{y}(\mathrm{t})$ around 300 MHz and the and the spacing of spectral components are, respectively.
(a.) $3 \mathrm{MHz}, 5 \mathrm{KHz}$
(b.) $1 \mathrm{MHz}, 15 \mathrm{KHz}$
(c.) $3 \mathrm{MHz}, 15 \mathrm{KHz}$
(d.) $1 \mathrm{MHz}, 5 \mathrm{KHz}$
42. For an 8 feet $(2.4 \mathrm{~m})$ parabolic dish antenna operating at 4 GHz , the minimum distance required for far field measurement is closest to
(a.) 7.5 cm
(b.) 15 cm
(c.) 15 m
(d.) 150 m
43. A system has a phase response given by $\phi(\omega)$, where ω is the angular frequency. The phase delay and group delay at $\omega=\omega_{0}$ are respectively given by
(a.) $-\frac{\phi\left(\omega_{0}\right)}{\omega_{0}},-\left.\frac{d \phi(\omega)}{d \omega}\right|_{\omega=\omega_{0}}$
(b.) $\phi\left(\omega_{0}\right),-\left.\frac{d^{2} \phi\left(\omega_{0}\right)}{\mathrm{d} \omega^{2}}\right|_{\omega=\omega_{0}}$
(c.) $\frac{\omega_{0}}{\phi\left(\omega_{0}\right)},-\left.\frac{d \phi(\omega)}{\mathrm{d} \omega}\right|_{\omega=\omega_{0}}$
(d.) $\omega_{0} \phi\left(\omega_{0}\right), \int_{-\infty}^{\omega_{0}} \phi(\lambda) d y$
44. A uniform plane wave in air impinges at 45^{0} angle on a lossless dielectric material with dielectric constant ε_{r}. The transmitted wave propagates in a 30° direction with respect to the normal. The value of ε_{r} is
(a.) 1.5
(b.) $\sqrt{1.5}$
(c.) 2
(d.) $\sqrt{2}$
45. A rectangular waveguide has dimensions $1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$. Its cut-off frequency is
(a.) 5 GHz
(b.) 10 GHz
(c.) 15 GHz
(d.) 12 GHz
46. Two coaxial cables 1 and 2 are filled with different dielectric constants $\varepsilon_{\mathrm{r} 1}$ and $\varepsilon_{\mathrm{r} 2}$ respectively. The ratio of the wavelengths in the two cables $\left(\lambda_{1} / \lambda_{2}\right)$ is
(a.) $\sqrt{\varepsilon_{r 1} / \varepsilon_{r 2}}$
(b.) $\sqrt{\varepsilon_{r 2} / \varepsilon_{r 1}}$
(c.) $\varepsilon_{r 1} / \varepsilon_{r 2}$
(d.) $\varepsilon_{r 2} / \varepsilon_{r 1}$
47. The contents of Register (B) and Accumulator (A) of 8085 microprocessor are 49 H and 3 AH respectively. The contents of A and the status of carry flag (CY) and sign flag (S) after executing SUB B instructions are
(a.) $\mathrm{A}=\mathrm{F} 1, \mathrm{CY}=1, \mathrm{~S}=1$
(b.) $\mathrm{A}=0 \mathrm{~F}, \mathrm{CY}=1, \mathrm{~S}=1$
(c.) $\mathrm{A}=\mathrm{F} 0, \mathrm{CY}=0, \mathrm{~S}=0$
(d.) $\mathrm{A}=1 \mathrm{~F}, \mathrm{CY}=1, \mathrm{~S}=1$

