GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Sem-I Examination January 2010

Subject code: 610003

Subject Name: Discreet Mathematics for Computer Science

Date: 21 / 01/ 2010 Time: 12.00 -2.30 pm
Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Define "Boolean expression". Show that
$$[a * (b' \oplus c)]' * [b' \oplus (a * c')']' = a * b * c'$$

- **(b)** Define "Symmetric Boolean expression". Determine whether the **07** following functions are symmetric or not:
 - (i) a'bc' + a'c'd + a'bcd + abc'd
 - (ii) abc' + ab'c + a'bc + ab'c' + a'bc' + a'b'c
- Q.2 (a) Define "Universal quantifier" and "Existential quantifier".
 - (i) Express the following sentences into logical expression using First Order Predicate Logic:
 - "All lines are fierce"
 - "Some student in this class has got university rank"
 - (ii) Show the following implication without constructing the truth tables first and thereafter show it through the truth tables.

$$(P \rightarrow Q) \rightarrow Q \Longrightarrow (P \lor Q)$$

(b) Define equivalence relation.

Let Z be the set of integers and R be the relation called "Congruence modulo 5" defined by

$$R = \{ \langle x, y \rangle \mid x \in Z \land y \in Z \land (x - y) \text{ is divisible by 5} \}$$

Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z.

OR

(b) Define "compatibility relation" and "maximal compatibility block". Let $\mathbf{07}$ the compatibility relation on a set $(x_1, x_2, ..., x_6)$ be given by the matrix

Draw the graphs and find the maximal compatibility blocks of the relation.

07

Q.3 (a) Define "Composite relation" and "Converse of a relation".
Given the relation matrix
$$M_R$$
 of a relation R on the set $\{a, b, c\}$, find the

relation matrices of ~R (Converse of a R),

$$R^2 = R \text{ o } R \text{ and } R \text{ o } \sim R.$$

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

(b) Prove the following Boolean Identities:

04

07

- (i) $a \oplus (a \oplus b')' = a \oplus b$
- (ii) a*(a*b')'=a*b
- (c) Find the six left cosets of $H = \{p_1, p_5, p_6\}$ in the group $\langle S_3, * \rangle$, given in the following table:

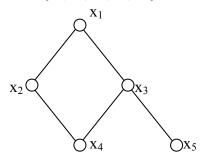
0	3

*	p_1	p_2	p_3	p_4	p ₅	p_6
p_1	p_1	p_2	p_3	p_4	p_5	p_6
p_2	p_2	p_1	p_5	p_6	p_3	p_4
p_3	p_3	p_6	p_1	p_5	p_4	p_2
p_4	p_4	p_5	p_6	p_1	p_2	p_3
p_5	p_5	p_4	p_2	p_3	p_6	p_1
p_6	p_6	p_3	p_4	p_2	p_1	p_5

OR

07

(ii) The following figure gives the Hesse diagram of a partially ordered set P, R, where $P = \{x_1, x_2, x_3, x_4, x_5\}$.



Find which of the following are true:

 $x_1 R x_2$, $x_4 R x_1$, $x_1 R x_1$, and $x_2 R x_5$. Find the upper and lower bounds of $\{x_2, x_3, x_4\}$, $\{x_3, x_4, x_5\}$, $\{x_1, x_2, x_3\}$

(b) Show that

04

- (i) a + 0 = a
- (ii) a + 1 = a'
- (iii) a + a = 0
- (iv) a + a' = 1

where $a + b = (a * b') \oplus (a' * b)$

(c) Show that $\langle S_3, * \rangle$ as given in the above table [i.e. Q.3(c) main part] is a group. [Note: Only one non-trivial example to show associativity will be sufficient.

For $P = \{ p_1, p_2, ..., p_5 \}$ and $Q = \{ q_1, q_2, ..., q_5 \}$ explain why (P, *) and $\langle Q, \Delta \rangle$ are not groups. The operations * and Δ are given in the following table:

*	p_1	p_2	p_3	p_4	p_5	Δ	q_1	q_2	q_3	q_4	q_5
p_1	p_1	p_2	p_3	p_4	p_5	q_1	q_4	q_1	q_5	q_3	q_2
p_2	p_2	p_1	p_4	p_5	p_3	q_2	q_3	q_5	q_2	q_1	q_4
p_3	p_3	p_5	p_1	p_2	p_4	q_3	q_1	q_2	q_3	q_4	q_5
p_4	p_4	p_3	p_5	p_1	p_2	q_4	q_2	q_4	q_1	q_5	q_3
p ₅	p_5	p_4	p_2	p_3	p_4	q_5	q_5	q_3	q_4	q_2	q_1

(b) Define "Lattice as an Algebraic System", "Direct Product of Lattices" **07** and "Complete Lattice".

Let the sets
$$S_0$$
, S_1 ,..., S_7 be given by $S_0 = \{a, b, c, d, e, f\}$, $S_1 = \{a, b, c, d, e\}$, $S_2 = \{a, b, c, e, f\}$, $S_3 = \{a, b, c, e\}$, $S_4 = \{a, b, c\}$, $S_5 = \{a, b\}$, $S_6 = \{a, c\}$, $S_7 = \{a\}$

Draw the diagram of $\langle L, \subseteq \rangle$,

where $L = \{S_0, S_1, S_2, \dots, S_7\}$

OR

Q.4 (a) Define "Subgroup", "Group Isomorphism", and "Kernel of the 07 homomorphism".

Show that the groups $\langle G, * \rangle$ and $\langle S, \Delta \rangle$ given by the following table are isomorphic.

*	p_1	p_2	p_3	p_4	Δ	q_1	q_2	q_3	q_4
p_1	p_1	p_2	p_3	p_4	q_1	q_3	q_4	q_1	q_2
p_2	p_2	p_1	p_4	p_3	q_2	q_4	q_3	q_2	q_1
p_3	p_3	p_4	p_1	p_2	q_3	q_1	q_2	q_3	q_4
p_4	p_4	p_3	p_2	p_1	q_4	q_2	q_1	q_4	q_3

(b) Define "Sub Lattice", "Lattice homomorphism" and "Distributive **07** Lattice".

Find all the sub lattices of the lattice $\langle S_n, D \rangle$ for n = 12, i.e. the lattice of divisors of 12 in which the partial ordering relation D means "division".

- Q.5 (a) Define Directed Graph, Cycle, Path, In degree, Binary Tree 05
 - **(b)** Can we say that any square Boolean Matrix will definitely represent a **05** directed graph? What does a 4x4 unit matrix represent?

Draw the graph corresponding to the following Boolean Matrix:

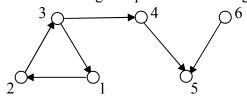
$$\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

How many (>=0) cycles does this graph have? Write down all the cycles. Which single edge is to be deleted to convert this graph into a cyclic graph?

(c) From the adjacency matrix of a simple digraph, how will you determine 04 whether it is a directed tree? If it is a directed tree, how will you determine its root and terminal nodes?

OR

- Q.5 (a) Define Graph, Loop, Out Degree, Tree, Node Base
 - (b) Find the strong components of the digraph given below: 05



Also find its unilateral components. Give brief valid reasons/justification for your answer.

(c) Define complete binary tree. Show through two examples with $n_t = 7$ 04 and $n_t = 8$ of complete binary trees that the total number of edges is given by $2(n_t - 1)$, where n_t is the number of terminal nodes.

05