2873-09.

SE (chemical) (sem DD) (R) may 09

Process Calculations 3161

(REVISED COURSE)

VB-3378

(3 Hours)

[Total Marks : 100

(1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Assume suitable data wherever necessary.
- (4) Figures to the right indicate full marks.
- (a) How many moles of K₂ CO₃ will contain 117 kg 'K'?

5

5

5

- t(b) A sample of gas having volume of 1 m³ is compressed to half of its original volume. The operation is carried out for a fixed mass of gas at constant temperature. Calculate the percent increase in pressure.
- (c) It is desired to make up 1000 kg of a solution containing 35% by weight of a substance, 'A'. Two solutions are available, one containing 10 weight % 'A' and other containing 50 weight % 'A'. How many kilograms of each solution will be required?
- (d) The dry bulb temperature and dew point of ambient air were found to be 302 K and 291 K respectively. Barometer reads 100 kPa. Calculate: (i) absolute molal humidity and (ii) absolute humidity.

 Data: Vapour pressure of water at 291 K = 2.0624 kPa

 Vapour pressure of water at 302 K = 4.004 kPa.
- (a) A vent stream from an ethylbenzene plant has a composition: 66% H₂, 33% .12 CH₄ and 1% other components, (CO + C₂H₆ + C₂H₄ etc.). It is passed through a PSA unit where hydrogen is recovered as 98% pure stream with 2% CH₄ as an impurity. Recovery of hydrogen is 85% at feed pressure of 50 bar. Calculate the composition of reject stream.
- (b) A feed to a continuous fractionating column analyses by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight % benzene and 5 weight % benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate % recovery of benzene.
- 3. The fresh feed to a methanol synthesis unit contains 32 mole % CO, 64 mole % H₂ and 4 mole % N₂ and flows at a rate of 100 mol/h. The fresh feed is mixed with recycle feed flowing at a rate of 400 mol/h to produce a reactor feed containing 13 mole % N₂. The product stream leaving the condensor (after reactor) contains only liquid methanol. For preventing a build up of nitrogen in the system, a purge stream is withdrawn from the gas stream leaving the condenser. The gases not purged constitute the stream recycled to the reactor. Compute the production rate of methanol (mol/h), the molar flow rate and composition of the purge gas, and the overall and single pass conversion.
- (a) In production of chlorine gas by oxidation of hydrochloric acid gas, air is used 30% in excess of that theoretically required. Based on 4 kmol HCl, Calculate:
 - (i) the weight ratio of air to hydrochloric acid gas in feed.
 - (ii) If oxidation is 80% complete, find the composition of product stream on mole basis.

[TURN OVER

Con. 2873-VR-3378-09.

- (b) A sample of fuel oil has C/H ratio 9-33 (by weight) and contains 1-3% Sulphur (weight basis). The net calorific value of the fuel oil is 39685 kJ/kg at 298 K. Calculate its gross calorific value using latent heat of water at 298 K. λwater vapour at 298 K = 2442-5 kJ/kg.
- 5. (a) A closed vessel contain a mixture of 40% NO₂ and 60% N₂O₄ at a temperature of 311 K and a pressure of 531.96 kPa. When the temperature is increased to 333 K, some of N₂O₄ dissociates to NO₂ and a pressure rises to 679.95 kPa. Calculate the composition of gases at 60°C by weight.

(b) A feed containing 60 mole % A, 30 mole % B and 10 mole % inerts enters a reactor. The product stream leaving the reactor is found to contain 2 mole % A. Reaction taking place is : 2A + B → C. Find the percentage of original 'A' getting converted to 'C'.

(a) The dry bulb temperature and dew point of ambient air were found to be 303 K and 289 K respectively. Calculate (i) the absolute molal humidity, (ii) the absolute humidity, (iii) the % RH (iv) the % saturation and (v) the humid heat.

Data: Vapour pressure of water at 289 K = 1.818 kPa

Vapour pressure of water at 303 K = 4-243 kPa.

Barometric pressure = 100 kPa.

(b) Temperature of oxygen is raised from 350 K to 1500 K. Calculate the amount of heat that must be supplied for raising the temperature of 1 kmol oxygen using the C_p° data given below: C_p° = a + bT + cT² + dT³

Gas	a	b × 10 ³	c × 10 ⁶	d x 10 ⁹
02	26-0257	11-7551	-2.3426	-0.5623

7. (a) Calculate the heat of formation of ethane gas at 298-15 K from its elements using Hess's law.

Data: Heat of formation of $CO_{2(g)} = -393.51$ kJ/mol

Heat of formation of $\hat{H}_2 \hat{O}_{(l)}^{(s)} = -285.83 \text{ kJ/mol}$

Heat of combustion of ethane gas at 298-15 K = -1560-69 kJ/mol.

(b) A natural gas has the following composition on mole basis:

 $CH_4 = 84\%$, $C_2H_6 = 13\%$, and $N_2 = 3\%$ Calculate :

- (i) The heat added to heat 2 kmol of gas mixture from 311 K to 533 K.
- (ii) The heat to be added to heat 200 kg of natural gas from 311 K to 533 K Data: C°_{pm} Values in kJ/(kmol. K)

Gas	C° _{pm} (311-298 K)	C° _{pm} (533–298 K)
CH₄	36-0483	41.7800
C ₂ H ₆	53-5240	67-4954
N ₂	29-1317	29.3578