Qn. Booklet No:	92408	Roll Number :				
•••		_	 	 	 	

INSTRUCTIONS TO CANDIDATES

- 1. Fill in the OMR sheet carefully as per the instructions given on the back of the OMR sheet.
- 2. Use only ball point pen (black ink) to fill in the OMR sheet.
- 3. Write your Roll Number (all eight digits) on the Question Booklet and on the left hand side of the OMR sheet (basic data part).
- 4. The duration of the examination is 120 Minutes.
- After opening the Question Booklet at 2 PM, ensure that there are 120 Questions and that the printing of all the questions are legible. If there are any missing or illegibly printed questions, the matter may be reported to the Invigilator immediately.
- 6. There are 4 options (A, B, C & D) for each question. Mark your answer corresponding to each question by blackening the corresponding bubble in the OMR sheet with a black ink ball point pen.
- 7. For every correct answer 1 mark will be awarded. No deduction of mark will be made for unanswered questions and incorrect answers. Marking of more than one bubble against a question number in the OMR sheet will result in the exclusion of that answer from valuation.
- 8. Calculator, Logarithm table, Mobile phone, Electronics instruments, etc. will not be allowed in the Examination Hall.
- 9. Rough work and calculations can be made in the blank pages attached to this Question Booklet.
- 10. The OMR Answer sheet and Admit Card should be handed over to the Invigilator. The candidate's copy of the OMR Answer sheet and the counterfoil of the Admit Card can be obtained from the Invigilator before leaving the examination hall.
- 11. The candidates will be allowed to leave the hall only after the completion of the examination time.
- 12. The answer sheets of candidates, who resort to any kind of malpractice during the examination, will not be valued.

120 Minutes

1.
$$\vec{\nabla} \cdot \vec{r} r^{n-1}$$
 is

(B)
$$(n+2)r^{n-1}$$

(C) $(n+2)r^n$

(D) $(n+1)r^{n-1}$

analyticity of a complex function Cauchy - Riemann conditions for the 2.

f(z) = u(x,y) + i v(x,y) are

(A)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

(B) $\frac{\partial u}{\partial r} = \frac{\partial v}{\partial v}$

(C)
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

where C is the Given $\vec{F} = \hat{i} 3xy - \hat{j}y^2$. The value of the integral 3. curve in the xy plane, $y = 2x^2$, from (0,0) to (1,2)

(A) $\frac{7}{6}$

(D) $-\frac{7}{6}$

If A is an $n \times n$ matrix, then $\det(-A)$ is

(A) $-\det(A)$ (B) $\det A$ 4.

(A) $-\det(A)$

 $(-1)^n \det A$

(D) det (-A)

The eigen values of the matrix are 5.

(A) 1 and 4

(B) 3 and 2

(C) 1 and 2

(D) 1 and 0

The dielectric susceptibility of an anisotropic medium is 6.

(A) A scalar quantity

(B) A second rank tensor

(C) A vector quantity

(D) An axial vector

- Choose the correct statement 7.
 - (A) The rank of a Cartesian tensor increases by one on contraction
 - (B) The rank of a Cartesian tensor decreases by one on differentiation
 - (C) The rank of a Cartesian tensor increases by one on differentiation
 - (D) The rank of a Cartesian tensor is not affected by differentiation
- The relationship between the Bessel functions $J_n(x)$ and $J_{-n}(x)$ is 8.

 $(A) \mathcal{I}_{-n}(x) = -J_n(x)$

(B) $J_{-x}(x) = J_{-x}(x)$

 $(C) J_n(x) = (-1)^{n+1} J_n(x)$

(D) $J_{-n}(x) = (-1)^n J_n(x)$

- The Fourier series expansion of f(x) = x for $-\pi \le x \le \pi$ is 9.
 - (A) $2\sum_{n=0}^{\infty} \frac{(-1)^n \sin nx}{n}$

(B) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}$

(C) $2\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}$

(D) $2\sum_{n=0}^{\infty} \frac{(-1)^{n+1}\cos nx}{n}$

- 10. The square roots of i are
 - (A) $\pm \frac{1}{\sqrt{2}}(1-i)$
- (B) 1 and 2 (C) $\pm (1+i)$
- 11. The degrees of freedom of a rigid body fixed at one point is
 - (A)3

- (B) 6

- A particle of unit mass is attracted by gravitational inverse square law of force to a fixed point. The Lagrangian function of the system is,
 - (A) $L = \frac{1}{2}(r^2 + \dot{r}^2\dot{\theta}^2) + \frac{k}{r}$
- (B) $L = \frac{1}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{k}{r}$ (D) $L = \frac{1}{2}(\dot{r}^2 + \dot{r}^2\dot{\theta}^2) + \frac{k}{r}$
- (C) $L = \frac{1}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{k}{r^2}$
- 13. A particle is moving under a central force with potential energy function $V(r) = br^{n+1}$, where b is a constant and is an integer. Stable circular orbits can be formed if (B) n = -4 (C) n = -3
 - (A)n = -5

- (D) n > -3

- Dimension of total cross section is that of 14.
 - (A) Length

(B) Volume

(C) Area

- (D) Dimensionless
- The relation between Lagrangian and Hamiltonian is **15.**
 - (A) $H(q, p, t) = q_i \dot{p}_i L(q, \dot{q}, t)$ (C) $H(q, p, t) = \dot{q}_i \dot{p}_i L(q, \dot{q}, t)$
- (B) $H(q, p, t) = \dot{q}_i p_i L(q, \dot{q}, t)$
- (D) $H(q, p, t) = q_i p_i L(q, \dot{q}, t)$
- Consider small oscillations of a linear triatomic molecule. The resonant frequencies 16. of vibration are such that
 - (A) One frequency is zero and the remaining two are unequal
 - All the three are equal **(B)**
 - Two are zeros and one has a nonzero value (C)
 - (D) One is zero and the other two are equal

17. The phase velocity of a wave packet is given by

(A)
$$v = \frac{\omega}{k}$$

(B)
$$v = \frac{d\omega}{dk}$$

(C)
$$v = \frac{k}{\omega}$$

(D)
$$v = \frac{d^2\omega}{dk^2}$$

18. A column of mercury of total length L partially fills a U tube. The tube is rocked gently so that the column of mercury begins to oscillate with a frequency given by

(A)
$$\omega = \frac{2g}{L}$$

(B)
$$\omega = \sqrt{\frac{2g}{L}}$$

(C)
$$\omega = \sqrt{\frac{g}{L}}$$

(D)
$$\omega = \sqrt{\frac{g}{2L}}$$

- 19. If the Hamiltonian of a system is invariant under time translation
 - (A) Kinetic energy of the system is conserved
 - (B) Linear momentum is conserved
 - (C) Total energy of the system is conserved
 - (D) Angular momentum is conserved
- 20. If the Lagrangian of a system is $L = \frac{1}{2}m(\dot{z}^2 + \dot{z}^2 + \dot{z}^2)$, then
 - (A) r alone is a cyclic coordinate
 - (B) z alone is a cyclic coordinate
 - (C) z and r are cyclic coordinates
 - (D) ϑ and z are cyclic coordinates
- 21. Hamilton's variational principle says that

(A)
$$\delta \int \dot{L} dt = 0$$

(B)
$$\int_{t}^{t_2} L dt = 0$$

(C)
$$\delta \int_{t_1}^{t_2} L dt = 0$$

(D)
$$\delta \int_{t}^{t_2} L dx = 0$$

- 22. The length of a spaceship is measured to be exactly half of its proper length. The speed of the spaceship is
 - (A) $\frac{\sqrt{2}}{3}e^{-\frac{1}{3}}$

(B) $\sqrt{\frac{3}{2}}c$

(C) $\frac{2}{3}c$

(D) $\frac{\sqrt{3}}{2}c$

23. Two electrons leave a radioactive sample in opposite directions, each having a speed of 0.67c with respect to the sample. Then speed of one electron with respect to the other is (A) 0.92c (B) 0.67c (C) 1.34c (D) c 24. The energy equivalent of 1 gram is (A) 8.99×10^{16} J (B) 8.99×10^{13} J (D) 8.99×10¹³eV (C) 8.99J 25. Electric field $\vec{E}(x)$ satisfies the relation $\nabla \times \vec{E}(x) = 0$. This relation follows from (A) Gauss' law (B) Ampere's law (C) Stokes' theorem (D) Coulomb's law 26. Differential form of Gauss' law is (A) $\vec{\nabla}.\vec{E} = \frac{\rho}{\varepsilon_0}$ (C) $\nabla E = \frac{\rho}{\varepsilon_0}$ The direction of the magnetic field produced at a point on the axis of a circular coil 27. carrying electric current is (A) Along the axis of the coil and directed towards the centre of the coil (B) Along the axis of the coil and directed away from the centre of the coil (C) Along a direction inclined to the axis and passing through the point (D) Perpendicular to the axis of the coil passing through the point Total energy of magnetic field is 28. (B) $\frac{1}{2} \int \vec{H} \cdot \vec{E} d^3 x$ (A) $\int \vec{H} \cdot \vec{B} d^3 x$ (D) $\frac{1}{2} \int \vec{H} \times \vec{B} d^3 x$ (C) $\frac{1}{2} \int \vec{H} \cdot \vec{B} d^3 x$ The skin depth due to a time varying magnetic field with frequency ω is 29. proportional to (C) ω (A) $\omega^{\bar{2}}$

- 31. Choose the correct statement
 - (A) Ampere's law is valid for dynamic current
 - (B) Displacement current is introduced to modify Faraday's law
 - (C) Displacement current modifies Coulomb's law
 - (D) Ampere's law is valid only for steady state current

32. Choose the correct statement

- (A) Using scalar and vector potentials, Maxwell's equations can be reduced to simple second order differential equations
- (B) Maxwell's equations are second order differential equations
- (C Scalar and vector potentials lead to simple first order differential equations
- (D) Maxwell's equations are a set of inhomogeneous differential equations

Choose the correct statement 33.

- (A) Dielectric constant is in general a complex quantity
- (B) Dielectric quantity is purely imaginary
- (C) Dielectric quantity is purely real
- (D) Real part of the dielectric constant always increases with frequency

34. Plasma frequency of a medium depends on

- (A) The resistivity of the medium
- (B) Total number of electrons per unit volume of the medium
- (C) Conductivity of the medium
- (D) Total electrons of the medium

35. Transverse electric (TE) waves means

- (A) E_z is zero everywhere with the boundary condition
- (B) E_z is not zero everywhere
- (C) B_z is zero everywhere (D) Both E_z and B_z zeros everywhere

For a rectangular wave guide 36.

- (A) TE_{1,0} has the lowest cutoff frequency for both TE and TM modes
- TE_{1.0} has the lowest cutoff frequency for the TE modes only **(B)**
- TE_{1.0} has the lowest cutoff frequency for the TM modes only (C)
- TM_{1.0} has the lowest cutoff frequency for both TE and TM modes (D)

Choose the correct statement *37.*

- (A) The Q factor of a cavity depends on the area of cross section of the cavity
- (B) The Q factor of a cavity depends only on the incident frequency of the electromagnetic wave
- (C) The Q factor of a cavity depends on the length of the cavity.
- (D) The Q factor of a cavity is a measure of the sharpness of the response of the cavity to external excitations

92408 6 38. The index of refraction 'n' of a medium of permeability μ and permittivity ε is

(A)
$$n = \sqrt{\mu \varepsilon}$$

(B)
$$n = \mu \varepsilon$$

(C)
$$n = \frac{\sqrt{\mu_0 \varepsilon_0}}{\sqrt{\mu \varepsilon}}$$

(D)
$$n = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}}$$

- 39. The total instantaneous power radiated by an accelerated nonrelativistic charged particle is given by
 - (A) Lienard-Wiechert formula
- (B) Coulomb formula

(C) Larmor formula

- (D) Langevin formula
- 40. The total power radiated by a short, center-fed antenna for a fixed input current increases as
 - (A) Frequency

- (B) Square root of the frequency
- (C) Inverse of the frequency
- (D) Square of the frequency
- 41. Consider the motion of a charged particle moving in a uniform static magnetic field of induction 'B'. The gyration frequency (relativistic case) is given by

(A)
$$\omega_B = \frac{e\vec{B}}{\gamma mc}$$

(B)
$$\omega_{B} = \frac{c\bar{B}}{\gamma mc}$$

(C)
$$\omega_{B} = \frac{ec\vec{B}}{\gamma c}$$

$$\omega_{B} = \frac{1}{2} \frac{ec\bar{B}}{\gamma mc}$$

42. In a 2n dimensional phase space, if $\delta q \delta p \neq h$, the volume of a phase cell is given

by (A)
$$h^{2n}$$

$$) h^{2n}$$
 (E

(D)
$$h^2$$

43. A linear harmonic oscillator is in thermal equilibrium with a heat bath at temperature T. Its partition function is given by

(A)
$$z(T) = \sum_{i=1}^{n} \log^{-1} x_i$$

(B)
$$z(T) = \sum_{n} e^{\frac{(n+\frac{1}{2})\hbar\omega}{2kT}}$$

(C)
$$z(T) = \sum_{n} e^{-x}$$

(D)
$$z(T) = \frac{(n+\frac{1}{2})\hbar\omega}{kT}$$

- 44. Liquid heffum 4 becomes a superfluid when its temperature is lowered below
 - (A) 3.1K

(B) 4.3K -

(C) 1.2K

(D) 2.17K

45. For adiabatic expansion of photon gas

(A)
$$pV = RT$$

(B)
$$pV^{4/3} = a \text{ constant}$$

(C)
$$pV^3 = a constant$$

(D)
$$pV^{3/2} = a \text{ constant}$$

The heat capacity of a degenerate Fermi gas at low temperatures, T, is proportional

(A)
$$T^2$$

(B) \sqrt{T}

(D) Does not depend on temperature

The de Broglie wavelength of an electron of kinetic energy E(eV) is proportional to 47.

(B)
$$E^{\frac{1}{2}}$$

(C)
$$E^{-1}$$

If the wave function of a particle is $\psi = A \exp\{-(x-x_0)^2\}$ then value of A is

(A)
$$\frac{1}{\sqrt{\sqrt{2\pi}a}}$$

(B)
$$\frac{1}{2\pi a}$$

(C)
$$\sqrt{\sqrt{2\pi}a}$$

(D) $\sqrt{2a}$

If A is a hermitian operator then e^{iA} is

(A) Hermitian operator

- (B) Orthogonal operator
- (C) Antihermitian operator

(D) Unitary operator

The hamiltonian of a perturbed harmonic oscillator is given by **50.**

 $H = \frac{1}{2} \frac{p^2}{m} + \frac{1}{2} kx^2 + bx^3$. The first order correction to energy is

(C)
$$\frac{\hbar\omega}{2}$$

(D)
$$\hbar\omega(n+\frac{1}{2})$$

Given that A and B are Hermitian operators such that [A, B] = iC, then 51.

(A)
$$\Delta A \Delta B \ge \frac{1}{2} |\langle C \rangle|$$

(B)
$$\Delta A \Delta B = 0$$

(C)
$$\Delta A \Delta B = \frac{1}{2} \hbar$$

(D)
$$\Delta A \Delta B \leq \frac{1}{2} |\langle C \rangle|$$

A particle is moving in one dimension in a potential V(x). If the Hamiltonian of the particle is $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$, then $\frac{d\langle x \rangle}{dt}$ is given by

(B)
$$\frac{p^2}{2m}$$

(C)
$$\left\langle \frac{p}{m} \right\rangle$$

(D)
$$\langle x \rangle$$

- The expectation value of momentum p in the nth state of a harmonic oscillator is
 - (A) 0
- (B) $\frac{1}{2}\hbar\omega$
- (C) $(n+\frac{1}{2})\hbar\omega$ (D) $\frac{1}{2}$
- The expectation value of L_r^2 in an eigen state of L_z is
 - (A) 0

(B) $\frac{nm}{2}$

(C) $\frac{\hbar^2}{2}[l(l+1)-m^2]$

- (D) $\frac{\hbar^2}{2}l(l+1)$
- Which one of the relations given below is not satisfied by Pauli Matrices? *55.*
 - (A) $\sigma_x \sigma_v + \sigma_v \sigma_r = 0$

(C) $\sigma_{x}^{2} = \sigma_{x}^{2} = \sigma_{x}^{2} = 1$

- (B) $\sigma_x \sigma_y = i\sigma_x$ (D) $\sigma_x \sigma_y \sigma_y \sigma_z = 0$
- Assuming that the alpha particles "bounce" freely between the walls presented by the spherical well potential with a speed ~ 109 cm/s and the radius of the radioactive nucleus is 10^{-12} cm, if T is the transmission coefficient of the barrier, the probability of tunneling through the barrier per/second is
 - (A) 10^{-21} T
- (B) 10^{21} T
- (D) 0

- Choose the correct statement *57*.
 - (A) The degeneracy of the n = 2 state of hydrogen atom can be fully removed due to Stark effect
 - The degeneracy of the n = 2 state of hydrogen atom can be partially removed due to Stark effect
 - The ground state of hydrogen atom shows Stark effect
 - (D) The energy of the ground state gets changed due to Stark effect
- The total scattering cross section of a particle from a hard sphere of radius 'a' is 58.
- (C) $\sigma = 4a^2$
- (D) $\sigma = a^2$

- A) $\sigma = 4\pi a^2$ (B) $\sigma = \pi a^2$ 59. Optical theorem in scattering says that
 - (A) $\sigma = \frac{4\pi}{k} \operatorname{Re} f_k(0)$
- (B) $\sigma = \frac{4\pi}{L} \operatorname{Im} f_k(0)$

(C) $\sigma = \operatorname{Im} f_k(0)$

(D) $\sigma = 4\pi \operatorname{Im} f_{\iota}(0)$

- 60. For a Dirac particle
 - (A) Spin angular momentum is zero
 - (B) Orbital angular momentum is not conserved
 - (C) The total angular momentum is not conserved
 - (D) Orbital angular momentum is conserved
- The current density for a relativistic fermi system is
 - (A) $J = \psi^{\dagger} \alpha \psi$ (B) $J = c \psi^{\dagger} \psi$
- (C) $J = c\psi^{\dagger}\alpha\psi$ (D) $J = \psi^{\dagger}\psi$

(A) The time constant RC of the circuit should be less with respect to the period of 62. The time constant RC of the circuit should be comparable with respect to the (C) The time constant RC of the circuit should be large with respect to the period of the input wave (D) The polarity switching property of the diode is employed The ripple factor of a rectifier is (A) $\gamma = \sqrt{\left(\frac{I_{rms}}{I_{dc}}\right) - 1}$ (B) $\gamma = \sqrt{\left(\frac{I_{rms}}{I_{dc}}\right)}$ (C) $\gamma = \frac{I_{rms}^2}{I_{rms}^2}$ (D) $\gamma = \sqrt{\left(\frac{I_{rms}}{I_{dc}}\right)}$ The small-signal collector-emitter current gain α_f and the small-signal collectorbase current gain h_{fe} are related through the relation (A) $\alpha_f = \frac{{h_{fe}}^2}{1 + {h_{fe}}^2}$ (B) $\alpha_f = \frac{1 + {h_{fe}}}{{h_{fe}}}$ (C) $\alpha_f = \frac{1}{h_{fe}}$ The parameter that measures the performance of FET is **65.** (B) Transresistance (A) Transconductance (D) Drain current (C) Amplification factor Effect of negative voltage feedback in amplifier circuit is to (A) Decrease the output resistance of the amplifier (B) Increase the output resistance of the amplifier (C) Decrease the output voltage of the amplifier (D) Decrease the output current of the amplifier. 67. Consider an operational amplifier with $A = 10^5$, $Z_1(s) = R_1 = 1000$ ohrns $Z_1(f) = R_f = 10000$ ohms. The non-inverting gain is (A) -10(C) 10 (D) -11An amplifier has a stew rate given by the manufacturer as $5V/\mu s$. At a signal frequency of 0.1 MHz, the maximum amplitude of the undistorted sine-wave amplitude is (A) 0.5 V_{\odot} (B) 7.96 V_{\odot} (C) 0.796 V (D) 5V Logarithmic action of an operational amplifier can be achieved by having (A) A transistor in a common-emitter connection in the feedback loop

70. The gates which are extensively used as standard logic gates are

(C) A transistor in a common-base connection in the feedback loop

(B) A resistor and a capacitor in the feedback loop

(D) A resistor in the feedback loop

(A) AND and OR

(B) OR and NOR

(C) NAND and NOR

(D) OR and XOR

			http://physicskerala.blogspot.con
71.	Which one of the following Boolean	identiti	ties is wrong?
	(A) A + AB = A	(B)	
	(C) $A(A+B)=A$, ,	A(A+B) = AB
	·	` ,	
72.	The truth table given below correspo	nds to	
	A B F		
	0 0 1		
	0 1 1		
	1 0 1		
	1 1 0 (A) NOR (B) OR		(C) NOD
	(A) NOR (B) OR		(C) XOR (D) NAND
73.	The decimal equivalent of the binary	, (1111	1' in
	(A) 15 (B) 4	1111	(C) 14 (D) 8
	(2) 4		
74.	The bipolar junction transistors (BJT	') opera	ate with
	(A) Electrons only	(B)	(// /
	(C) Holes only	(D)	Majority carriers
	771		
75.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(A) A differential amplifier follows	ed by a	an inverter
	(B) A differential amplifier alone		
	(C) An integrated amplifier(D) An integrated amplifier follows	ad Evr a	- Investor
	(D) An integrated amplifier follows	edoxa	m inverter
76.	The bandwidth required for trans	ismissio	ion of an amplitude-modulated radio-
,	frequency signal is		ton or an amphibaco nivalitation ratio
	(A) Same as the highest modulating	g fregu	nency
	(B) Twice the highest modulating i		
	(C) Thrice the highest modulating	-	-
	(D) Half of the highest modulating	freque	ency
77.	The role of ionosphere in communic		
	(A) Visible light gets reflected from		
	(B) Microwaves get reflected from		-
	(C) Radio waves get reflected from		onosphere layers
	(D) It does not play any particular i	role	
		41 ₀	and entired films in
78.	The principle behind light propagation	on unro	ough optical flore is
	(A) Refraction		(B) Dispersion
	(C) Reflection		(D) Total internal reflection
=0			
79. △	Balmer series of the hydrogen spectr	um ap	
	(A) Ultraviolet		(B) Infrared
	(C) Near UV and visible		(D) Far infrared

							_					
80.	Hyp	oerfine structure of The orbital anguards	f spec	etral lines a	re obt	ained	whe	n - angl	ılar m	omen	tum	
	(A)	The orbital ang	ılar n	iomentum i	is coup	pled to	o spi	III ange	41			
	(B)	The atom is pla	ceu II.	a magnen	C HOIG							
	(C)	•										
	(D)		clear	spin is incl	uded							
01	Com	sidos the sulistim		.c. 2n 1-	1	0.11/6	ak r	nagnet	ic fiel	d. T	he nui	mper or
81.	Con	sider the splitting	g up c	ora $P_{\frac{3}{2}}$ le	vei in	a wc	,cir i	11				
		tral lines which										
1						(0)	2			(D)	3	
	(A)		(B)			(C)					\supset	
82.	The	quantum mechan	nionl	avntaccion	for t	se ma	one	tic dip	ole m	omer	it of a	an atom
	with	angular moment	iiioai iim ']	, ic exbression	101 u	ic m	* * ****		2			_
		$\vec{\mu} = \frac{ge}{2m}\vec{J}$	omi 'y	ρ.	•			ge		₹D)	$\vec{\mu} = 0$	$-\frac{e}{J}\vec{J}$
	(A)	$\mu = \frac{3}{2m}J$	(B)	$\vec{\mu} = -\frac{\sigma}{m}J$	Ī	(C)	μ=	$=-\frac{1}{2m}$			•	m
									10/11			
83.	The	splitting up spect	ral lir	es of atom	s plac	ed in	an e	lectric	field i	s kno	wn as	•
	(A)	Stark effect			(B)	Pasc	:hen-	-Back	effect			
	(C)	Zeeman effect			(D)	Ano	malo	ous Ze	eman	effect	t	
						_		1			_	
84.	The	term symbol for	a par	ticular ato	mic _/ st	ateis	guc	oted as	$^{4}P_{\underline{5}}$,	the v	alues	of L, S
)		2			
		J are $L = 1$, $S = 3/2$,	T _ 4	:/2	99			L = 1	S –	1/2	I = 1/2)
	• •	L = 1, $S = 3/2$, L = 2, $S = 1/2$,			1	дв) (D)		L=1 L=2	, S =	1/2,	I = 3/3	2
	(0)	1 2, 0 1/2,	<i>3</i> -)	(D)			, 0	1,22,	J 5	_
85.	Micr	owave spectrum	is pro	duced by n	goleci	ıles sl	howi	ing				
		No variation in t			•							
	(B)	Change in the di	pole	moment du	ring v	ibrati	ion					
	(C)	Change in the di	pole/	moment du	ring e	lectro	nic	transit	ion			
	(D)	A change in the	_ ^	$\overline{}$	_							
	• /	<u> </u>	1		_							
86.	The a	approximation th	at a	diatomic n	nolecu	ıle ca	n ex	cecute	roteti	one r	and	
	indep	endently is know	m as						TOTAL	0119	atio V	torations
	_	Born approxima	,		(B)	Born	n-Or	penhe	imer	annro	wim -	.:
		Frank-Condon p		le	(D)	Paul	i's a	approx	imati	appro	Amna	uon
	` '		•		()			-bbrov	шцаш	J11		
87.	Choo	se the correct star	temer	nt								
		Q ₂ molecule giv			ectra							
		O ₂ molecule giv				nectr	9					
		9 ₂ molecule giv					a					
		O ₂ molecule doe					- n					
	\ - '}'	- 2 VIOVAIC UUC	.5 HUL	Prio a 1018	RITOTIA	ıkan	ian s	spectra	a			

88.	Sym (A) (C)	metric stretchin Raman and IR Raman inactiv	active	(B)		nan and IR inactiv		tive 🦳
89.	(A)		or the formation	on of Q bra (B)	anch i	n molecular spec = 1, J' = J'' = -1, J'' = J'+1		٨ /
90.	Whi	ch one of the for ^{13}C	llowing nucle (B) ¹ H	i <i>does not</i>	posse (C)	ess NMR spectrui	n?	128
91.	(A)		$\alpha = \beta = 90^{\circ} \neq$	γ (B)	$a_1 \neq$	ameters $a_2 \neq a_3, \alpha = \beta$ $a_2 \neq a_3, \alpha \neq \beta$		90°
92.	The (A)	space lattice of	diamond is (B) bcc		(C)	hcp	(D)	sc
93.	Brag (A)		ion is $n\lambda = 2$ (B) $\lambda \le 2$		ragg	reflection can oc $\lambda = 2d$	cur if (D)	$\lambda \leq d$
94.		boundaries of the $K = \pm \frac{2\pi}{a}$			///	inear lattice lies : $K = \pm \frac{\pi}{a}$		$K = \pm \frac{\pi}{a^2}$
95.	The	quantum of latti Photon		s called	7	Phonon	(D)	Exciton
96.						vector at the Ferner $\varepsilon_F = \frac{\hbar^2}{m} k_F^2$		
97.		neat capacity of			ture 7	m $\Gamma, \text{ is proportional}$ \sqrt{T}		
98.	Solut	ions of the wave	e equation in		lattic	•	` '	
99.						heat at very low ermi model (D)		
100.	V	and gap of Ge a	t room tempe (B) 0.66 J		(C)	0.66 eV	(D)	0.844 eV
101.	/ .(.	oefficient is giv		_		_		77
	(A)	$R_H = \frac{E_y}{j_* B} \qquad (1)$	$R_{H} = -$	$\frac{E_x}{j_x B}$	(C)	$R_H = \frac{E_y}{B}$	(D)	$R_{H} = \frac{E_{y}}{j_{x}}$

102.	The	relation between dielectric constar	nt $arepsilon$ a	ınd th	e susceptibility χ	in Sl	units is
	(A)	$\varepsilon = 1 + 4\pi\chi$	(B)	<i>E</i> = 3	1 + <i>x</i>		
	(C)	$\varepsilon = 1 + 4\pi\chi$ $\varepsilon = 1 - \chi$	(D)	$\varepsilon = 1$	$1-4\pi\chi$		
103.	Cho	ose the correct statement					
	(A)	Magnetic lines of force are expel	led fr	om a	ferromagnet		
	(B)	A ferromagnet becomes a parama	agnet	when	the temperature	is dec	reased
	(C)	below the Curie temperature Magnetic lines of force are expel	led fr	om a	diamagnet		
	(D)	A diamagnet becomes a paramag	net w	hen t	he temperature is	decre	eased
		below the Curie temperature					
104.	Whe	n a specimen is placed in a m	agnet	ic fie	eld and is then	coole	d below the
	trans	sition temperature for superconduc	ctivity	, the	magnetic field of	riginal	ly present in
	(A)	pecimen is ejected from the specion Isotope effect			effect is known a per effect	ıs	
		Langevin effect	` '	-	ssner effect		
105	117h c	an a conductivity of	. 44.				
105.	(A)	n a conductor becomes a supercor Heat capacity becomes zero at th			temperature		
	(B)	There is a discontinuity in heat c	apacit	ty at t	he transition tem	peratu	re
		Heat capacity remains constant in					*4* =
	(D)	Heat capacity decreases without temperature	show:	ing ar	iy discontinuity a	it the t	ransition
	_	•	R)			
106.	One	atomic mass unit is equivalent to 1.66 × 10 ⁻²⁴ kg	(B)	0.16	$66 \times 10^{-27} \text{ kg}$		
	(C)	$1.66 \times 10^{-27} \text{ kg}$		0.16	$66 \times 10^{-24} \text{ kg}$		
107	, ,	nuclear radius R and atomic mass	numk	sor 1	of a puoleus are	ralata	d oo
10/.			munic				1
	(A)	$R \propto A^3$ (B) $R \propto A$		(C)	$R \propto A^{-1}$	(D)	$R \propto A^{\frac{1}{3}}$
108.	The	spin of neutron is					
	(A)			(C)	2	(D)	1
100	The	quadrupole electric moment of the	e nucl	ens is	s a measure of		
109.	(A)	The charge of the nucleus	711401	oub it	a moustife of		
	(B)	Angular momentum of the nucle					
	(C)	The deviation of charge distribut Charge independence of the nuc			pherical symmet	гу	
	(D)						
110.		existence of neutrino was propose		Pauli	to explain		
\sim	(A) (B)	Conservation of charge in beta de Conservation of energy in alpha		,			
<i>∽</i>	(5)	Stability of nucleus					
	(D)	Conservation of energy in beta d	ecay				

111,	rıqu	and drop model of the nucleus can	explai	n
	(A)	Nuclear fission		
	(C)	Nuclear stability	(B)	Nuclear fusion
	` ,	- Lorour Stability	(D)	Gamma decay
112	A .co	ndition for any least		
~ 1 2.	/AN	ndition for nuclear isomerism is		
	(A)	I TO OT OUT CITOLEY ICACI I	near th	ne ground state
	(B)	The presence of an energy level r	near th	ne ground state differing strongly in
		angular momentum		as ground board dimering patengry in
	(C)	The presence of states differing in	_ ~_	
	(D)	The evictors of states untering in	n ang	utar momentum
	(2)	The existence of mirror nuclei		K.o
112	`NT:1			
113.		ear force is		
	(A)	Long ranged	(B)	Coulombic
	(C)	Short ranged	(D)	
			(2)	mi oiso squaro
114.	Exis	tence of magic nuclei can be unde	retoor	1 naina
	(A)	Liquid drop model	12100C	Collective model
	(C)	Maria and the state of the stat		// \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	(C)	Nuclear shell model	(D)	Optical model
112	~~			
115.		counter works on the principle		
	(A)	That electron from the ion-pair p	roduc	es an avalanche at one point in the
		counter		0
	(B)	That electron from the ion-pair p	roduc	es an avalanche which spreads through
	` ,	the counter		3
	(C)	That number of charged particles	المهم	he counted
		That about of charged particles	Calvi	oc country
	(D)	That charged particles recombined	2 10 10	om neutral particles
			<i>)</i>)	
116.		lear reactions is understood using		
	(A)	Shell model	(B)	Compound nucleus model
	(C)	Collective model	(D)	Single particle model
	• •	_		
117	Gluo	ons		
111		Are colourless	(B)	Mediate weak interactions
				Mediate gravitational interactions
	(C)	Mediate strong interactions	(D)	Wiedlate gravitational interactions
118.	In be	eta decay		
	(A)	Parity is conserved	(B)	
	(C)	Spin is not conserved	(D)	Energy is not conserved
	(-)			
110	The .	number of states a quark can have	is	
117.		101110ci of statos a quark com n= -	(B)	1
	(A)		`_ :	
	(C)	3	(D)	8
	- K			mared ha
120,	The c	wark structure of hadrons was fir		Call Mann
6	CAY	Gell-Mann and Okubo	(B)	Gell-Mann
	15-78 B	V		
	(C)	Feynman	(D)	Gamow