Question No. 1 is compulsory.

- 2 Attempt any four questions out of remaining six questions.
- 3 Assume any suitable data, wherever required but justify the same.
- Figures to the right indicate full marks.
- a) Define Laplace transforms, and If $L\{f(t)\}=f(s)$ and g(t) is a function defined as

$$g(t) = \left\{ \begin{array}{ll} 0 \,, & 0 \,<\, t \,<\, a \\ f(\,t \,-\, a\,) \,, & t \,>\, a \end{array} \right. \quad \text{then prove that } \, L \, \{\, g(t) \, \} \, = \, e^{-as} \, f(s)$$

b) Determine the value of b such that the rank of A is 3 where $A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{bmatrix}$ 5

(c) If
$$w = f(z)$$
 is analytic then show that $+f'(z)|^2 = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$ 5

- (d) Express $f(x) = \frac{1}{2} (\pi x)$ in a Fourier series with period 2π to be valid in the interval $(0, 2\pi)$.
- (a) Find (1) $L\left\{\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3\right\}$ (2) $L\left\{e^{2t} \sin^4 t\right\}$ 5
- (b) Find the Fourier series of $f(x) = x^2$, 0 < x < 4 and hence deduce that 5 $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
- (c) Determine P such that the function $f(z) = \frac{1}{2} \log \left(|x^2 + y^2| \right) + i \tan \frac{1}{y}$ is analytic.
- (d) Using row transformations find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$
- (a) Using Laplace transforms show that $\int_{0}^{t} e^{-\sqrt{2}t} = \frac{\sinh t \sin t}{t} dt = \frac{\pi}{8}$.

The Reduce the matrix
$$A = \begin{bmatrix} 1 & 2 & -2 & 3 & 1 \\ 1 & 3 & -2 & 3 & 0 \\ 2 & 4 & -3 & 6 & 4 \\ 1 & 1 & -1 & 4 & 6 \end{bmatrix}$$

to the normal form and hence find its rank.

Find the Fourier series expansion of the function—

$$f(x) = \pi x,$$
 $0 \le x \le 1$
= $\pi (2 - x),$ $1 \le x \le 2$

If z = u + iv be analytic function of z = x + iy, and $u - v = (x - y)(x^2 + 4xy + y^2)$ 5 men find f(z).

5

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (b) Find (1) $L^{-1} \left\{ \frac{s^2}{\left(s^2 + a^2\right)^2} \right\}$ (2) $L^{-1} \left\{ \frac{s + 29}{\left(s + 4\right)\left(s^2 + 9\right)} \right\}$
- (c) If $u = \lambda$ (1 + cos θ) then find V so that u + iv is analytical.
- (d) Obtain half range sine series for f(x). where f(x) = mx, $0 \le x \le \pi/2$

$$= m (\pi - x), \quad \frac{\pi}{2} \le x \le \pi.$$

- (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into s.t. line 4u + 3 = 0.
 - (b) Use convolution theorem to find $L^{-1} \left\{ \frac{(s+2)^2}{(s^2+4s+8)^2} \right\}$
 - (c) If the matrix $A = \begin{bmatrix} 4 & 3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then show that adj A is symmetric.
 - (d) Show that the set of functions $e^{-\frac{x}{2}}$, $e^{-\frac{x}{2}}$ (1 x), $e^{-\frac{x}{2}}$ (2 4x + x^2) are orthogonal over $(0, \infty)$.
 - (a) Find the Bilinear transformation which maps the points. 1, i, 1 of z-plane on $i,\ 0,\ -i$ of w-plane and find the fixed pt's of this transformation.
 - (b) If A is non-singular matrix of order n, prove that

 - (1) A (adj A) = (adj A) A = $|A| |I_n|$ (2) $|A| |A| = |A| |A|^{n-1}$ Obtain complex form of Fourier series for $f(x) = \cos h 3x + \sin h 3x$ in (-3, 3)
 - (d) Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ with y(0) = 0 and y'(0) = 1 by Laplace transf method.
- (a) If f(t) is a periodic function of period T, show that L { f(t) } = $\frac{1}{1-e^{-ST}} \int_{0}^{1} e^{-st} f(t)$
 - (b) If u is a regular function, then prove that— $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If '(z) |2 = 4 | f'(z)
 - (c) Test the consistency of following system of equation and solve them if possib 6x + y + z = -4

$$6x + y + z = -4$$

 $2x - 3y - z = 0$

- -x 7y 2z = 7.
- (d) Expand $f(x) = a \left(1 \frac{x}{l}\right)$ in the range (0, 1) in a half range cosine series.