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7. Latches and Flip-Flops

Latchesandflip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of
information. The main difference between latches and flip-flops is that for latches, their outputs are constantly
affected by their inputs as long as the enable signal is asserted. In other words, when they are enabled, their content
changes immediately when their inputs change. Flip-flops, on the other hand, have their content change only either
at the rising or falling edge of the enable signal. This enable signal is usually the controlling clock signal. After the
rising or falling edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major differences in these
flip-flop types are the number of inputs they have and how they change state. For each type, there are also different
variations that enhance their operations. In this chapter, we will look at the operations of the various latches and flip-
flops.

7.1 Bistable Element

The simplest sequential circuit or storage elementistable elementwhich is constructed with two inverters
connected sequentially in a loop as shown in Figure 1. It has no inputs and two outputQadoed€d. Since the
circuit has no inputs, we cannot change the valu€g afidQ’. However,Q will take on whatever value it happens
to be when the circuit is first powered up. Assume @at O when we switch on the power. SimQds also the
input to the bottom inverte’, therefore, is a 1. A 1 going to the input of the top inverter will produce a 0 at the
outputQ, which is what we started off with. Similarly, if we start the circuit vitbr 1, we will getQ’ = 0, and
again we get a stable situation.

A bistable element has memory in the sense that it can remember the content (or state) of the circuit
indefinitely. Using the signdD as the state variable to describe the state of the circuit, we can say that the circuit has
two stable state€) = 0, andQ = 1; hence the name “bistable.”

An analog analysis of a bistable element, however, reveals that it has three equilibrium points and not two as
found from the digital analysis. Assuming again tQat 1, and we plot the output voltagé,(,) versus the input
voltage V1) of the top inverter, we get the solid line in Figure 2. The dotted line shows the operation of the bottom
inverter where/,, andVj,, are the output and input voltages respectively for that inverter.

Figure 2 shows that there are three intersection points, two of which corresponds to the two stable states of the
circuit whereQ is either 0 or 1. The third intersection point labetegtastableis at a voltage that is neither a logical
1 nor a logical 0 voltage. Nevertheless, if we can get the circuit to operate at this voltage, then it can stay at that
point indefinitely. Practically, however, we can never operate a circuit at precisely a certain voltage. A slight
deviation from the metastable point as cause by noise in the circuit or other stimulants will cause the circuit to go to
one of the two stable points. Once at the stable point, a slight deviation, however, will not cause the circuit to go
away from the stable point but rather back towards the stable point because of the feedback effect of the circuit.

An analogy of the metastable behavior is a ball on top of a symmetrical hill as depicted in Figure 3. The ball can
stay indefinitely in that precarious position as long as there is absolutely no movement whatsoever. With any slight
force, the ball will roll down to either of the two sides. Once at the bottom of the hill, the ball will stay there until an
external force is applied to it. The strength of this external force will cause the ball to do one of three things. If a
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Figure 1. Bistable element. Figure 2. Analog analysis of bistable element.
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Figure 3. Ball and hill analogy for metastable behavior.

small force is applied to the ball, it will go partly up the hill and then rolls back down to the same side. If a big
enough force is applied to it, it will go over the top and down the other side of the hill. We can also apply a force
that is just strong enough to push the ball to the top of the hill. Again at this precarious position, it can roll down
either side.

We will find that all latches and flip-flops have this metastable behavior. In order for the element to change
state, we need to apply a strong enough pulse satisfying a given minimum width requirement. Otherwise, the
element will either remain at the current state or go into the metastable state in which case unpredictable results can
occur.

7.2 SR Latch

The bistable element is able to remember or store one bit of information. However, because it does not have any
inputs, we cannot change the information bit that is stored in it. In order to change the information bit, we need to
add inputs to the circuit. The simplest way to add inputs is to replace the two inverters with two NAND gates as
shown in Figure 4(a). This circuit is calle®R latch In addition to the two outputsandq', there are two inputs
andR' for setandresetrespectively. Following the convention, the primesiandr denotes that these inputs are
active low. The SR latch can be in one of two states: a set stateQwhg&nor a reset state wherr 0.

To make the SR latch go to the set state, we simply asserirnpet by setting it to 0. Remember that 0 NAND
anything gives a 1, hence= 1 and the latch is set.Rfis not assertedk(= 1), then the output of the bottom NAND
gate will give a 0, and sQ = 0. This situation is shown in Figure 4 (d) at tigdf we de-assers so thats =R =
1, the latch will remain at the set state becaisthe second input to the top NAND gate, is O which will keep1
as shown at timg. At timet, we reset the latch by makimy= 0. Now,Q' goes to 1 and this will forc@to go to a
0. If we de-asser' so that again we hawe = R = 1, this time the latch will remain at the reset state as shown at
time tz. Notice the two times (at andt;) when boths andR' are de-asserted. &t Q is at a 1, whereas, &t Q is at
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Figure 4. SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing diagram.
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Figure 5. SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol.

a 0. When both inputs are de-asserted, the SR latch maintains its previous state. PreyQumsothe value 1, so
att;, Q remains at a 1. Similarly, previousttpQ has the value 0, so@atQ remains at a 0.

If both s andR' are asserted, then bagrandQ' are equal to 1 as shown at titgelf one of the input signals is
de-asserted earlier than the other, the latch will end up in the state forced by the signal that was de-asserted later as
shown at timds. At ts, R is de-asserted first, so the latch goes into the normal set statg withandQ' = 0.

A problem exists if botl$ andR' are de-asserted at exactly the same time as shown d.tifrfeoth gates have
exactly the same delay then they will both output a 0 at exactly the same time. Feeding the zeros back to the gate
input will produce a 1, again at exactly the same time, which again will produce a 0, and so on and on. This
oscillating behavior, called theritical race, will continue forever. If the two gates do not have exactly the same
delay then the situation is similar to de-asserting one input before the other, and so the latch will go into one state or
the other. However, since we do not know which is the faster gate, therefore, we do not know which state the latch
will go into. Thus, the latch’s next state is undefined.

In order to avoid this indeterministic behavior, we must make sure that the two inputs are never de-asserted at
the same time. Note that both of them can be de-asserted, but just not at the same time. In practice, this is guaranteed
by not having both of them asserted. Another reason why we do not want both inputs to be asserted is that when they
are both asserteq,is equal tay', but we usually warnp to be the inverse af.
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Figure 6. SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing
diagram.
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Figure 7. SR latch with enable: (a) circuit using NOR gates; (b) truth table.

From the above analysis, we obtain the truth table in Figure 4(b) for the NAND implementation of the SR latch.
Q is the current state or the current content of the latchoands the value to be updated in the next statgure
4(c) shows the logic symbol for the SR latch.

The SR latch can also be implemented using NOR gates as shown in Figure 5(a). The truth table for this
implementation is shown in Figure 5(b). From the truth table, we see that the main difference between this
implementation and the NAND implementation is that for the NOR implementatios,ahdRr inputs are active
high, so that setting to 1 will set the latch and settirgto 1 will reset the latch. However, just like the NAND
implementation, the latch is set wherr 1 and reset whep = 0. The latch remembers its previous state vder
= 0. Whens=R =1, bothQ andQ' are 0. The logic symbol for the SR latch using NOR implementation is shown in
Figure 5(c).

7.3 SR Latch with Enable

The SR latch is sensitive to its inputs all the time. It is sometimes useful to be able to disable the in@Rs. The
latch with enablgalso known as gatedSR latch accomplishes this by adding an enable inputp the original
implementation of the latch that allows the latch to be enabled or disabled. The circuit for the SR latch with enable
using NAND gates is shown in Figure 6(a), its truth table in Figure 6(b), and logic symbol in Figure 6(ck ¥hen
1, the circuit behaves like the normal NAND implementation of the SR latch except tBartie inputs are active
high rather than low. Whel = 0, the latch remains in its previous state regardless «f dheR inputs. In actual
circuits, the enable input can either be active high or low, and may be mam®d CLK, or CONTROL A typical
operation of the latch is shown in the timing diagram in Figure 6(d). Betiye@dt;, E = 0 so changing theandr
inputs do not affect the output. Betwedemndt,, E = 1 and the trace is similar to the trace of Figure 4(d) except that
the input signals are inverted.

The SR latch with enable can also be implemented using NOR gates as shown Figure 7.

7.4 D Latch

D Q met QI‘IQ)([I

0 | x 0 1

1 1 0

— Q — Q ©
A A D Q—
D —Q D —Q Q'
(a) (b) (d)

Figure 8. D latch: (a) circuit using NAND gates; (b) circuit using NOR gates; (c) truth table; (d) logic symbol.
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Figure 9. D latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing
diagram.

The disadvantage with the SR latch is that we need to ensure that the twosSiapdts, are never de-asserted
at the same time. This situation is prevented irDthatch by adding an inverter between the origisandRr inputs
and replacing them with just one inpuffor data) as shown in Figure 8(a) and (b).

Notice that the placement of the inverter with respect t@thetput is such that the output value follows the
D input. This feature is useful because, whereas the SR latch is useful for setting or resetting a flag on a given
condition, the D latch is useful for simply storing a bit of information that is presented on a line. Figure 8(c) shows
the truth table for the D latch, and Figure 8(d) shows the graphic symbol.

7.5 D Latch with Enable

Just like the SR latch with an enable input, the D latch can also have an enable input as shown in Figure 9(a).
When thekt input is asserted(= 1), theQ output follows thed input. In this situation, the latch is said to be “open”
and the path from the inpntto the outpu is “transparent”. Hence the circuit is often referred to warsparent
latch. WhenE is de-assertede(= 0), the latch is disabled or “closed”, and theoutput retains its last value
independent of the input. A sample timing diagram for the operation of the D latch with enable is shown in Figure
9(d). Betweert, andt,, the latch is enabled with = 1 so the outpup follows the inputD. Betweent; andt,, the
latch is disabled, sQ remains stable even wherchanges.

7.6 D Flip-Flop

Latches are often callddvel-sensitivebecause their output follows their inputs as long as they are enabled.
They are transparent during this entire time when the enable signal is asserted. There are situations when it is more
useful to have the output change only at the rising or falling edge of the enable signal. This enable signal is usually
the controlling clock signal. Thus, we can have all changes synchronized to the rising or falling edge of the clock.
An edge-triggered flip-flopachieves this by combining in series a pair of latches. Figure 10(a) shoogstiae-
edge-triggered D flip-flopvhere two D latches are connected in series and a clock sigrialconnected to the
input of the latches, one directly, and one through an inverter. The first latch is caltedstieelatch. The master
latch is enabled whedk = 0 and follows the primary inpamt Whenclk is a 1, the master latch is disabled but the
second latch, called th&lavelatch, is enabled so that the output from the master latch is transferred to the slave
latch. The slave latch is enabled all the while ttiat= 1, but its content changes only at the beginning of the cycle,
that is, only at the rising edge of the signal because dkds 1, the master latch is disabled and so the input to the
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slave latch will not change. The circuit of Figure 10(a) is callpdsitiveedge-triggered flip-flop because the output

Q on the slave latch changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low,
then it is referred to asreegativeedge-triggered flip-flop. The circuit of Figure 10(a) is also referred tonaaster-

slave D flip-flop because of the two latches used in the circuit. Figure 10(b) and (c) show the truth table and the
logic symbol respectively. Figure 10(d) shows the timing diagram for the D flip-flop.
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Another way of constructing a positive-edge-triggered flip-flop is to use three interconnected SR latches rather
than a master and slave D latch with enable. The circuit is shown in Figure 11. The advantage of this circuit is that it
uses only 6 NAND gates (26 transistors) as opposed to 10 gates (46 transistors) for the master-slave D flip-flop of
Figure 10(a). The operation of the circuit is as follows. Wher0D, the outputs of gates 2 and 3 are high (0 NAND
= 1). Thusn, = nz = 1, which maintains the output latch, comprising gates 5 and 6, in its current state. At the same
timen, = D' since one input to gate 4ng which is a 1 (1 NANDx = x'). Similarly, n; = b. Whene changes to I,
will be equal ton;' = D', while nz will be equal tab. So if D = 0, thenn; will be 0, thus asserting and resetting the
output latchg to 0. On the other hand,if= 1, them, will be 0, thus asserting and setting the output latchto 1.

Oncek = 1, changing will not changen, or n;, soQ will remain stable during the remaining time thas asserted.

E E QFQ
ik ZlgMaster ’7 STave Clk D | Q| Qext | OQnext
0 X 0 0 1
0 X 1 1 0
@ 1 X 0 0 1
1 X 1 1 0
Ky 0 x 0 1
b ok 4 1] x 1 0
—>Clk Q'— (b)
(©)

Figure 10. Master-slave positive-edge-triggered D flip-flop: (a) circuit using D latches; (b) truth table; (c) logic
symbol; (d) timing diagram.
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Figure 11. Positive-edge-triggered D flip-flop.
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Figure 12. Comparison of a gated latch, a positive-edge-triggered flip-flop, and a negative-edge-triggered flip-
flop: (a) circuit; (b) timing diagram.

Figure 12 compares the different operations between a latch and a flip-flop. In (a), we have a gated D latch, a
positive-edge-triggered D flip-flop and a negative-edge-triggered D flip-flop, all having the manput and
controlled by the same clock signal. (b) shows a sample trace of the circuit's operations. Notice that the gated D
latch @, follows theD input as long as the clock is high. The positive-edge-triggered flipgflopsponds to the
input only at the rising edge of the clock while the negative-edge-triggered flipfli@sponds to the input only
at the falling edge of the clock.

7.7 D Flip-Flop with Enable

A commonly desired function in D flip-flops is the ability to hold the last value stored rather than load in a new
value at the clock edge. This is accomplished by adding an enable inputecatiedE (clock enable) through a
multiplexer as shown in Figure 13(a). Whem= 1, the primaryb signal will pass to the input of the flip-flop,
thus updating the content of the flip-flop. Whem= 0, the bottom AND gate is enabled and so the current content
of the flip-flop, Q, is passed back to the input, thus, keeping its current value. Notice that changes to the flip-flop
value occur only at the rising edge of the clock. The truth table and the logic symbol for the D flip-flop with enabled
is shown in (b) and (c) respectively.

D
E C|k EN D Q Q1ext QnextI
D _| |
%} Q ° 0 x [ x]o 0 1 P
cll >Clk Q' Q 0 > x 1 L 2 T
1 X X 0 0 1 —EN Q'_
1 X X 1 1 0
4 0 x 0 0 1
4 0 x 1 1 0
T 1 | 0| x 0 1 (©
(@ Ry 1 1| x 1 0
(b)

Figure 13. D flip-flop with enable: (a) circuit; (b) truth table; (c) logic symbol.
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7.8 Asynchronus Inputs

Flip-flops, as we have seen so far, change states at the edge of a synchronizing clock signal. Many circuits
require the initialization of flip-flops to a known state independent of the clock signal. Sequential circuits that
change states whenever a change in input values occurs independent of the clock are refeagthotbrasous
sequential circuitsSynchronous sequential circyitsn the other hand, change states only at the edge of the clock
signal. Asynchronous inputs are usually available for both flip-flops and latches, and they are used to either set or
clear the storage element’s content independent of the clock.

Figure 14(a) shows a D latch with asynchromerBsETandCLEAR inputs, and (b) is the logic symbol for it. (c)
is the circuit for the D edge-triggered flip-flop with asynchroneBESET and CLEAR inputs, and (d) is the logic
symbol for it. WherPRESETis asserted (set to 0) the content of the storage element is set to a 1 immediately, and
whencCLEAR is asserted (set to 0) the content of the storage element is set to a 0 immediately.

Preset'
S
P — Q
Preset’
E— — Q=
- —E QF
R Clear'
Clear' [
() (b)
Preset-
|/ Q
Clk
: I
Q Preset’
D — —pClk Q'—
Clear' Cle‘arl
(©) (d)

Figure 14. Storage elements with asynchronous inputs: (a) D latch with preset and clear; (b) logic symbol for (a);
(c) D edge-triggered flip-flop with preset and clear; (d) logic symbol for (c).

7.9 Flip-Flop Types

There are basically four main types of flip-flops: SR, D, JK, and T. The major differences in these flip-flop
types are in the number of inputs they have and how they change state. Each type can have different variations such
as active high or low inputs, whether they change state at the rising or falling edge of the clock signal, and whether
they have asynchronous inputs or not. The flip-flops can be described fully and uniquely by its logic symbol,
characteristic table, characteristic equation, state diagram, or excitation table, and are summarized in Figure 15.
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Name / Characteristic State Diagram / Excitation Table
Symbol (Truth) Table Characteristic Equations
SR S R Q &x SR=00 or 01 gl Q Qe 5 R
X = or
000 O 8 Cl) g o
15 9~ |oo0o1 1 1 0 01
—pClk 010 0 SR=00 or 10 1 1 x 0
—R Q— |01 1 0 SR=01
100 1
101 1
110 x Qrext =S +RQ
11 1 x SR =0
JK 3K K200 or 01 =10 or 11 Q Qnext J K
Jd K Q Qext =bvor 0 0 0 x
000 O 0 1 1 x
1’ T joo1 1 1 o0 x1
—>Clk 010 0 JK=00 or 10 1 1 x 0
-« Qe—]011 O JK=01 or 11
100 1 L i ,
10 1 1 Qnext =J'K'Q +JIK' + JKQ
110 1 =JKQ +JK'Q + JK'Q' + JKQ’
111 0 =K'Q'+J) + JQ'(K'+K)
=K'Q+JQ’
D B D=1 Q Qnext D
D=0 0 0 0
e | QH ED
—bcik 0 x 0 D=1 100
L1 x 1 = 1 1 1
Q D=0
QnextzD
T=1
T _- Q Onext T
T Q Qext B 0 0 0
Y Q8 ED i
—bek 0 1 1 o 1 0 1
, 1 0 1 - 1 1 0
11 1 o T=1
Crex=TQ"+TQ=THUQ

Figure 15. Flip-flop types.
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7.9.1 SR Flip-Flop

We can replace the D latches in the D flip-flop of Figure 10(a) with SR latches to get a master-slave SR flip-
flop shown in Figure 16. Like SR latches, SR flip-flops are useful in control applications where we want to be able
to set or reset the data bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of
the clock signal. Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted
simultaneously.

S R Q Qext Qnextl
o[o]o 0 1
s S Q S Qe 0 o0 1] 1 0 Is ok
—E —E 0 1 0 0 1
- T R Qo 0| 1] 1 0 1 —Clk
1 [ o0o]o0 1 0 Y
~ 1o 1 1 0
clk > 1 1] 0] «x »
1] 1] 1 x x (©)
(@)
(b)

Figure 16. SR flip-flop: (a) circuit; (b) truth table; (c) logic symbol.

7.9.2 JK Flip-Flop

JK flip-flops are very similar to SR flip-flops. Thanput is just like thesinput in that when asserted, it sets the
flip-flop. Similarly, thek input is like therinput where it clears the flip-flop when asserted. The only difference is
when both inputs are asserted. For the SR flip-flop, the next state is undefined, whereas, for the JK flip-flop, the next
state is the inverse of the current state. In other words, the JK flip-flop toggles its state when both inputs are
asserted. The circuit, truth table and the logic symbol for the JK flip-flop is shown in Figure 17.

J K Q Q19Xl QI“IeXtI
3 olo] o 0 1
K b Q Q 00| 1| 1 0 1 ol
ol 1] 0 0 1
Cllk >Clk Q' Q' 0 1 1 0 1 —>Clk
1 0 0 1 0 —k Q'+
@ 1] 0] 1 1 0
1] 1] 0 1 0
1 1 1 0 1 (c)
(b)

Figure 17. JK flip-flop: (a) circuit; (b) truth table; (c) logic symbol.

7.9.3 T Flip-Flop

The T flip-flop has one input in addition to the clogkstands for toggle for the obvious reason. Whéas
assertedT(= 1), the flip-flop state toggles back and forth, and whende-asserted, the flip-flop keeps its current
state. The T flip-flop can be constructed using a D flip-flop with the two outpatsl Q' feedback to th® input
through a multiplexer that is controlled by thmput as shown in Figure 18.
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T Q Qhext Qrext —T Q-
0 0 0 1
—pClk
T D Q=0 0 1| 1 0 S
1 0 1 0
Clk >Clk Q' Q' 1 1 0 1
(©)
b
@ (b)

Figure 18. T flip-flop: (a) circuit; (b) truth table; (c) logic symbol.

7.9.4 Logic Symbol

Thelogic or graphical symbotescribes the flip-flop’s inputs and outputs, the names given to these signals, and
whether they are active high or low. All the flip-flops hayandQ' as their outputs. All of them also havei
input. The small triangle at the clock input indicates that the circuit is a flip-flop and so it is triggered by the edge of
the clock signal; if there is a circle in front, then it is the falling edge, otherwise, it is the rising edge of the clock

Preset’
—1 Qo —H1 oF P o
- Q= _Lcik & Clk .
Q|_ Q|_ _>C|k Q' —
—R' Q' Cle‘ar
(a) (b) (©) (d)

Figure 19. Various logic symbols: (a) Active low SR latch; (b) positive-edge-triggered active
high T flip-flop; (c) negative-edge-triggered T flip-flop; (d) positive-edge-triggered
D flip-flop with asynchronous active low preset and clear.

signal. Without the small triangle, the circuit is a latch. In addition, the flip-flops have one or two more inputs that
characterize the flip-flop and give it its name. Figure 19 shows several sample logic symbols for various memory
elements.

7.9.5 Characteristic Table

The characteristic tablas just the truth table but usually written in a shorter format. For example, compare the
characteristic table for the JK flip-flop in Figure 20 with the truth table in Figure 17(b). The truth table, as we have
seen, simply lists all possible combinations of the input signals, the current state (or content) of the flip-flop, and the
next state that the flip-flop will go to at the next active edge of the clock signal. The characteristic table answers the
guestion of what is the next state when given the inputs and the current state, and is used in the analysis of sequential
circuits.

J | K| Qext
0| 0 Q
0| 1 0
1] 0 1
1] 1| o

Figure 20. JK flip-flop characteristic table.
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7.9.6 Characteristic Equation

Thecharacteristic equatiois the functional Boolean equation that is derived from the characteristic table. This
equation formally describes the functional behavior of the flip-flop. Like the characteristic table, it specifies the flip-
flop’s next state as a function of its current state and inputs. For example, the characteristic equation for the JK flip-
flop can be derived from the truth table as follows:

Qrexx =J'K'Q +JK'Q + JK'Q' + JKQ'
= K'Q'+J) + JQ'(K'+K)
=KQ+JQ
The characteristic equation can also be obtained from the truth table using the K-map method as follows for the
SR flip-flop:

RQ

S 00 01 11 10

0| 0° Tl o'l o rRQ
4 5 7 6 S

1 11 1 X X

Thus, the characteristic equation for the SR flip-flop is
Qe =S +R'Q

7.9.7 State Diagram

A state diagramis a graph that shows the flip-flop’s operations in terms of how it transitions from one state to
another. The nodes are labeled with the states and the directed arcs are labeled with the input signals that cause the
transition to go from one state to the next. Figure 21 shows the state diagram for the SR flip-flop. For example, to go
from stateQ = O to the state@ = 1, the two inputs andR have to be 1 and 0 respectively. Similarly, if the current
state i = 0 and we want to remain in that state, taeneed to be 00 or 01.

SR=10
SR=00 or 01

SR=00 or 10
SR=01

Figure 21. State diagram for the SR flip-flop.

7.9.8 Excitation Table

The excitation tablegives the value of the flip-flop’s inputs that are necessary to change the flip-flop’s current
state to the desired next state at the next active edge of the clock signal. The excitation table answers the question of
what should the inputs be when given the current state that the flip-flop is in and the next state that we want the flip-
flop to go to. This table is used in the synthesis of sequential circuits.
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Figure 22 shows the excitation table for the SR flip-flop. As can be seen, this table can be obtained directly
from the state diagram. For example, if the current stage=i® and we want the next state tode 1, then the two
inputs must besr= 10.

Q| Gee | S | R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Figure 22. SR flip-flop excitation table.

7.10 VHDL for Latches and Flip-Flops

7.10.1 Implied Memory Element

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language
provides for signals to be interpreted as a memory element. In other words, memory element is declared depending
on how these signals are assigned. Consider the code in Figure 23.

ENTITY no_memory_element IS
PORT (A, B:IN STD_LOGIC;
C: OUT STD_LOGIC);
END no_memory_element;

ARCHITECTURE Behavior OF no_memory_element IS
BEGIN
PROCESS(A, B)
BEGIN
C<="14 -- assigns default value to C
IFA=B THEN
C<="0,
END IF;
END PROCESS;
END Behavior;

Figure 23. Sample VHDL description of a combinational circuit.

The process assigns the default value of 1 to C and then if A is equal to B then it changes the value of C to a 0.
In this code, C will be assigned a value for all possible outcomes of the test A = B. With this construct, a
combinational circuit is produced.

If we simply remove the statement that assigns the default value to C, then we have a situation where no value
will be assigned to C if A is not equal to B. The key point here is that the VHDL semantics stipulate that in cases
where the code does not specify a value of a signal, the signal should retain its current value. In other words, the
signal must remember its current value, and in order to do so, a memory element is implied.
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7.10.2 VHDL Code for a D Latch

Figure 24 shows the VHDL code for a D latch with enablendibleis 1 thenq follows D. However, ifEnable
is not 1, the code does not specify whahould be, thereforg retains its current value. This code produces a latch
and not a flip-flop because follows D as long a€nableis 1, and not only at the active edge of the signal. The
process sensitivity list includes batrandenablebecause either one of these signals can cause a change in the value
of theQ output.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_latch_with_enable IS
PORT(D, Enable : IN STD_LOGIC;
Q : OUT STD_LOGIC);
END D_latch_with_enable;

ARCHITECTURE Behavior OF D_latch_with_enable IS

BEGIN
PROCESS(D, Enable)
BEGIN
IF Enable ='1' THEN
Q<=D;
END IF;

END PROCESS;
END Behavior;

Figure 24.VHDL code for a gated D latch.

7.10.3 VHDL Code for a D Flip-Flop

Figure 25 shows the behavioral VHDL code for a positive-edge-triggered D flip-flop. The only difference here
is thatQ follows D only at the rising edge of the clock, and it is specified here by the condition “ClockEVENT AND
Clock = '1"." The 'EVENT attribute refers to any changes in the qualifying clock signal. So when this happens and
the resulting clock value is a one, we have in effect, a condition for a positive or rising clock edge. Note also that the
process sensitivity list contains only the clock signal because it is the only signal that can cause a change in the
output.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock : IN STD_LOGIC;
Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
PROCESS(Clock)
BEGIN
IF Clock'EVENT AND Clock ='1' THEN
Q <=D;
END IF;
END PROCESS;
END Behavior;

Figure 25.VHDL code for a positive-edge-triggered D flip-flop using an IF statement.
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Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement as shown in Figure
26. When execution reaches the WAIT statement, it stops until the condition in the statement is true before
proceeding. Note also that the process sensitivity list is omitted because the WAIT statement implies that the
sensitivity list contains only the clock signal.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock : IN STD_LOGIC;
Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
PROCESS
BEGIN
WAIT UNTIL Clock’EVENT AND Clock ='0' -- negative edge triggered
Q <=D;
END PROCESS;
END Behavior;

Figure 26.VHDL code for a negative-edge-triggered D flip-flop using a WAIT statement.

Alternatively, we can write a structural VHDL description for the positive-edge-triggered D flip-flop as shown
in Figure 27. This VHDL code is based on the circuit for a positive-edge-triggered D flip-flop as given in Figure 11.

-- define the behavioral operation of the 2-input NAND gate
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY NAND2 IS
PORT(I0, I1 : IN STD_LOGIC;
O : OUT STD_LOGIC);
END NAND2;

ARCHITECTURE Behavioral NAND2 OF NAND2 IS
BEGIN

O <= 11 NAND 12;
END Behavioral_NANDZ2;

-- define the behavioral operation of the 3-input NAND gate
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY NAND3 IS
PORT(IO, I1, 12 : IN STD_LOGIC;
O : OUT STD_LOGIC);
END NAND3;

ARCHITECTURE Behavioral_NAND3 OF NAND3 IS
BEGIN

O <= NOT (11 AND 12 AND 13);
END Behavioral_NAND3;

Figure 27. Structural VHDL code for a positive-edge-triggered D flip-flop.
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-- define the structural operation of the SR latch
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY SRlatch IS
PORT(SN, RN : IN STD_LOGIC;
Q, ON : OUT STD_LOGIC);
END SRlatch;

ARCHITECTURE Structural_SRlatch OF SRlatch IS

COMPONENT NAND2 PORT (10, I1: IN STD_LOGIC;
O : OUT STD_LOGIC);

END COMPONENT;

BEGIN
Ul: NAND2 PORT MAP (SN, QN, Q);
U2: NAND2 PORT MAP (Q, RN, QN);

END Structural_SRlatch;

-- define the structural operation of the positive edge triggered
-- D flip-flop

LIBRARY ieee;

USE IEEE.std_logic_1164.all;

ENTITY positive_edge_triggered D _flipflop IS
PORT(D, Clock : IN STD_LOGIC;
Q, QN : OUT STD_LOGIC);
END positive_edge_triggered_D_flipflop;

ARCHITECTURE Structural OF positive_edge_triggered_D _flipflop IS
SIGNAL N1, N2, N3, N4 : STD_LOGIC;

COMPONENT SRlatch PORT (SN, RN : IN STD_LOGIC;
Q, QN : OUT STD_LOGIC);

END COMPONENT;

COMPONENT NAND2 PORT (10, I1 : IN STD_LOGIC;
O : OUT STD_LOGIC);

END COMPONENT;

COMPONENT NAND3 PORT (10, I1, 12 : IN STD_LOGIC;
O : OUT STD_LOGIC);

END COMPONENT;

BEGIN
Ul: SRlatch PORT MAP (N4, Clock, N1, N2); -- set latch
U2: SRlatch PORT MAP (N2, N3, Q, QN); -- output latch
U3: NAND3 PORT MAP (N2, Clock, N4, N3); -- reset latch

U4: NAND2 PORT MAP (N3, D, N4);
END Structural;

Figure 27 (continue).Structural VHDL code for a positive-edge-triggered D flip-flop.
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7.10.4 VHDL Code for a D Flip-Flop with Asynchronous Inputs

Figure shows the VHDL code for a positive-edge-triggered D flip-flop with asynchronous active low reset and
clear inputs. The two asynchronous inputs are checked for independently of the clock event. When eébet the
or theclear input is asserted is set to a 1 or O respectively immediately. Otherwi$ellows D at the rising edge

of the clock.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock, Reset, Clear : IN STD_LOGIC;
Q : OUT STD_LOGIC);

END D_flipflop;
ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
PROCESS(Clock, Reset, Clear)
BEGIN
IF Reset ='0' THEN
Q<="1]
ELSIF Clear ='0' THEN
Q<=0
ELSIF Clock’EVENT AND Clock ='1' THEN
Q <=D;
END IF;

END PROCESS;
END Behavior;

Figure 28.VHDL code for a D flip-flop with asynchronous inputs.



