SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Excepts to Bio Groups)
Title of the paper: Engineering Mathematics - I
Semester: I
Sub.Code: 3ET102A-4ET102A-5ET102A
Date: 14-05-2009

Max.Marks: 80
Time: 3 Hours Session: AN

PART - A
Answer ALL the Questions
$(10 \times 2=20)$

1. Show that $\frac{\cos 3 \theta}{\cos \theta}=4 \cos ^{2} \theta-3$
2. Separate into real and imaginary parts of $\cos (x+i y)$
3. Find the direction cosines of the line joining points $(2,3,5)$ and (1,-3,2).
4. Find the centre and radius of the sphere $4\left(x^{2}+y^{2}+z^{2}\right)-8 x+12 y-$ $16 z-20=0$.
5. Find the rank of matrix. $\left[\begin{array}{ccc}3 & 4 & -6 \\ 2 & -1 & 7 \\ 1 & -2 & 8\end{array}\right]$
6. Find the sum and product of eigen values of the matrix $\left[\begin{array}{lll}1 & -4 & 4 \\ 1 & -2 & 4 \\ 2 & -1 & 3\end{array}\right]$
7. Evaluate $\int_{0}^{1} \int_{0}^{2} x y^{2} d y d x$
8. Sketch roughly the region of integration for the double integral $\int_{0}^{1} \int_{0}^{x} f(x, y) d x d y$.
9. Evaluate $\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{5} \theta d \theta$
10. Write the relation between Beta and Gamma functions.
PART - B
$(5 \times 12=60)$

Answer All the Questions
11. Expand $\operatorname{Sin}^{4} \theta \operatorname{Cos}^{3} \theta$ in a series of cosines of multiples of θ. (or)
12. It $\cos (\mathrm{u}+\mathrm{iv})=\mathrm{x}+\mathrm{iy}$ where $\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}$ as real, prove that
(i) $(1+x)^{2}+y^{2}=(\operatorname{Cosh} v+\cos u)^{2}$
(ii) $(1-\mathrm{x})^{2}+\mathrm{y}^{2}=(\operatorname{Cosh} v-\operatorname{Cos} u)^{2}$
13. Find the Shortest distance between the lines $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ Find also the equation to the line of shortest distance.
(or)
14. Find the equation of the sphere which touches the plane $3 x+2 y-$ $\mathrm{z}+2=0$ at the point $\mathrm{p}(1,-2,1)$ and also cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+4=0$.
15. State Cayley-Hamilton theorem and find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$ using Cayley - Hamilton theorem hence find A^{4}.
(or)
16. Reduce $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ into canonical form by an orthogonal transformation.
17. Change the order of integration and hence evaluate $\int_{0}^{1-x} \int_{x^{2}}^{2-x} x y d y d x$ (or)
18. Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} x y z d x d y d z$
19. Prove that $\lceil(1 / 2)=\sqrt{ } \pi$
(or)
20. Show that $\int_{0}^{1} \frac{x^{2} d x}{\left(1-x^{4}\right)^{1 / 2}} \cdot \int_{0}^{1} \frac{d x}{\left(1-x^{4}\right)^{1 / 2}}=\frac{\pi}{4}$

