SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/ B. Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - I
Semester: I
Sub.Code: ET102/3ET102A/4ET102A/5ET102A
Date: 12-05-2008

Max. Marks: 80
Time: 3 Hours
Session: AN
PART - A
$(10 \times 2=20)$

Answer All the Questions

1. Expand $\cos 4 \theta$ in terms of $\cos \theta$.
2. Show that $\sinh 2 x=2 \sinh x \cosh x$.
3. Find the point where the line $\frac{x}{1}=\frac{(y-1)}{I}=\frac{(z-3)}{2}$ meets the plane $x-y+z=0$.
4. Find the tangent plane at $(1,2,0)$ to the sphere $3\left(x^{2}-y^{2}-z^{2}\right)+8 x+12 y+16 z-47=0$.
5. State cayly-hamilton theorem.
6. If $\lambda=3$ and $\lambda=-2$ are twp eigen values of $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$ then find third eigen value.
7. Change the order of integration $\int_{0}^{4} \int_{x \frac{2}{4}}^{\sqrt{x}} d y d x$.
8. Find $\int_{0}^{1} \int_{0}^{2} \int_{0}^{y+z} d z d y d x$.
9. Prove that $\beta(m, n)=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 m-1} \theta d \theta$.
10. Find $\int_{0}^{2} \int_{0}^{1} 4 x y d x d y$.

$$
\begin{aligned}
& \text { PART - B } \\
& \text { Answer All the Questions }
\end{aligned}
$$

$$
(5 \times 12=60)
$$

11. Find $\frac{\cos 7 \theta}{\cos \theta}$ in terms of cosines powers of θ. (or)
12. Separate real and imaginary parts of cosech ($x+i y$).
13. Prove that the planes $x+y+z=6 ; 2 x-3 y-4 z=12$ and $2 x+7 y+8 z=12$ contains a common line.
(or)
14. Find the image of the line $\frac{(x-3)}{2}=\frac{(y-2)}{1}=\frac{(z-1)}{4}$ with respect to $x-y-z=3$.
15. Show that the quadratic form $Q=8 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-12 x_{1} x_{2}=8 x_{2} x_{3}+4 x_{3} x_{1}$ is positive semi definite.

(or)

16. Investigate for what values of a and b the simultaneous equations $x+y+z=6, x+2 y+3 z=10, x+2 y+a z=b$. will have
(a) no solution
(b) unique solution
(c) infinite solution
17. Change the order of integration $\int_{0}^{a} \int_{x}^{a}\left(x^{2}+y^{2}\right) d x d y$ and hence evaluate it.
(or)
18. Write the reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \mathrm{n}$ being the integer.
19. Prove that $\beta(m, n)=\frac{\sqrt{m}) n}{(\sqrt{m+n})}$.
(or)
20. Evaluate $\iint_{R} x y d x d y$ where R is the Quadrant of the circle $x^{2}+y^{2}=a^{2}, x \geq 0, y \geq 0$.
