N. B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.
(3). Assume suitable data if required.

1. (a) Time displacement in a periodic function has no effect on the magnitude spectrum, but changes the phase spectrum. Justify.
(b) Consider a continuous time system with input $x(t)$ and output $y(t)$ related by $y(t)=x(\sin (t))$
(i) Is this system causal?
(ii) Is this system linear?
(c) Determine whether the following signals are energy signals or power signals and evaluate their normalized energy and power
(i) $x(t)=e^{-a t} u(t), \quad a>0$
(ii) $x(t)=\cos \left(\omega_{0} t+\theta\right)$
(d) Determine which of the following signals are periodic.
(i) $x(t)=\left[\cos \left(2 t-\frac{\pi}{3}\right)\right]^{2}$
(ii) $x(t)=E v\{\cos (4 \pi t) u(t)\}$
(e) A continuous-time signal $x(t)$ is shown in Figure.

Sketch and label carefully each of the signals.

$$
\text { (i) } \left.\left.[x(t)+x(-t)] \mu(t) \quad \text { (ii) } \frac{3}{2}\right)-\delta\left(t-\frac{3}{2}\right)\right]
$$

2. (a) Given the system $\dot{y}+3 y=5 x$, ae output $y(t)$ when $x(t)=\sin (6 t) u(t)$
(i) Using Laplace transforn (ii) Sing Fourier transform (iii) Comment on the above results.
(b) Explain the relation betwe - ace Transform and Fourier Transform.
(c) Find the Laplace transfo the half-rectified sinewave $f_{H W}(t)$ of figure.

3. (a) The signals $h(t)$ and $u(t)$ are as shown in Figure. Compute convolution $h(t)^{*} u(t)$

(b) A series RL circuit in which $\mathrm{R}=5$ ohms and $\mathrm{L}=0.02 \mathrm{H}$ has an applied voltage
$\mathrm{v}=(100+50 \sin \omega \mathrm{t}+25 \sin 3 \omega \mathrm{t})$ volts where $\omega=500 \mathrm{rad} / \mathrm{s}$.
Find the current and the average power.
(c) State and prove frequency shifting property of Fourier transform. State its application in
4. (a) Figure shows a full-wave rectifier circuit with input the sinusoid $v_{i n}(t)=A \sin \omega t$. The output of that circuit is $v_{\text {out }}(t)=|A \sin \omega t|$. Express $v_{\text {out }}(t)$ as a trigonometric Fourier series.
Assume $\omega=1$

(b) Derive the Fourier transform of the periodic time function $f(t)=A \sum_{n=-\infty}^{\infty} \delta(t-n T)$
(c) Explain mapping between s-plane and z-plane.
5. (a) A linear time-invariant system is characterized by the system functio

(i) The system is stable
(ii) The system is causal

The system is anticausal
a discrete time system with zero (8)
(b) The difference equation describing the input-output re tion in
initial conditions, is $y(n)+y(n-1)=x(n)$.
Compute:
(i) The transfer function $H(z)$
(ii) The discrete time impulse respons
(iii) The response when the input $x(=1)$ for $n \geq 0$.
(c) Explain what is zero state response, zero input onse and total response.
6. (a) Consider $X(s)=\frac{s+3}{(s+1)(s-2)}$ Show alle soc conditions and obtain inverse laplace
transform for each case of the ROC con)
(b) For the given signal $x(n)=1+\sin 3 \cos \left(\frac{2 \pi}{N}\right) n+\cos \left(\frac{4 \pi}{N}+\frac{\pi}{2}\right) n$

Sketch (i) Real and imaginary p of Fourier series coefficients
(ii) Magnitude and phase same coefficients.
(c) Determine Fourier transform
(i) Continuous time sipna $R(t)=\cos \omega_{0} t$
(ii) Discrete time sigual $(n)=\cos \omega_{0} n$
(iii) Comment on ther whs in parts (i) and (ii).
7. (a) A fourth-order networ described by the differential equation

$$
\begin{equation*}
\frac{d^{4} y}{d t^{4}}+a_{3} \frac{d^{3} y}{d t^{3}}+a_{2} \frac{d^{2} y}{d t^{2}}+a_{3} \frac{d y}{d t}+a_{0} y(t)=u(t) \tag{8}
\end{equation*}
$$

where $y(t)$ is the output representing the voltage or current of the network, and $u(t)$ is any input. Express above equation as a set of state equations.
(b) In the circuit of Figure, all initial conditions are zero. Compute the state transition matrix using the (8) Inverse Laplace transform method.

4. (a) Figure shows a full-wave rectifier circuit with input the sinusoid $v_{i n}(t)=A \sin \omega t$. The output of that circuit is $v_{\text {out }}(t)=|A \sin \omega t|$. Express $v_{\text {out }}(t)$ as a trigonometric Fourier series. Assume $\omega=1$

(b) Derive the Fourier transform of the periodic time function $f(t)=A \sum_{n=-\infty}^{\infty} \delta(t-n T)$
(c) Explain mapping between s-plane and z-plane.
5. (a) A linear time-invariant system is characterized by the system functi
$H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$ Specify the ROC of $H(z)$ and
for the following conditions:
(i) The system is stable
(ii) The system is causal
(b) The difference equation describing the input-output ratio ans a discrete time system with zero
initial conditions, is $y(n)+y(n-1)=x(n)$.
Compute:
(i) The transfer function $H(z)$
(ii) The discrete time impulse respon
(iii) The response when the incus $x<$
(c) Explain what is zero state response, zero inpy noose and total response.
6. (a) Consider $X(s)=\frac{s+3}{(s+1)(s-2)}$ Show tho sidle ROC conditions and obtain inverse laplace transform for each case of the ROC
(b) For the given signal $x(n)=1+5+3 \cos \left(\frac{2 \pi}{N}\right) n+\cos \left(\frac{4 \pi}{N}+\frac{\pi}{2}\right) n$

Sketch (i) Real and imaginary orts of Fourier series coefficients
(ii) Magnitude and phase same coefficients.
(c) Determine Fourier transform 0
(i) Continuous time sign $\sim \sim)=\cos \omega_{0} t$
(ii) Discrete time sion a $Y(n)=\cos \omega_{0} n$
(iii) Comment on the shits in parts (i) and (ii).
7. (a) A fourth-order netwo s described by the differential equation

$$
\begin{equation*}
\frac{d^{4} y}{d t^{4}}+a_{3} \frac{d^{3} y}{d t^{3}}+a_{2} \frac{d^{2} y}{d t^{2}}+a_{3} \frac{d y}{d t}+a_{0} y(t)=u(t) \tag{8}
\end{equation*}
$$

where $y(t)$ is the output representing the voltage or current of the network, and $u(t)$ is any input.
Express above equation as a set of state equations.
(b) In the circuit of Figure, all initial conditions are zero. Compute the state transition matrix using the (8) Inverse Laplace transform method.

$$
v_{s}(t)=u_{0}(t)
$$

