Marks: 100

[3761]-17

F. E. Examination - 2010

APPLIED SCIENCE - II

(2003 Course)

Time: 3 Hours]

Instructions:

- (1) Answer to the two sections should be written in separate books.
- (2) Black figures to the right indicate full marks.
- (3) Use of logarithmic tables, slide rule, mollier charts, electronic pocket calculator and steam tables is allowed.
- (4) Neat diagrams must be drawn wherever necessary.
- (5) Assume suitable data, if necessary.

Constants: $h = 6.63 \times 10^{-4} \text{ J-sec.}$

$$m_{a} = 9.1 \times 10^{31} \text{kg}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

 $c = 3 \times 10^8 \text{ m/sec}$

SECTION - I

- Q.1) (A) Expression De-Broglie's Concept of Matter Waves. Derive an Expression for the De-Broglie Wavelength in terms of Energy. [06]
 - (B) Delive Expressions for Energy and Wave Function of a Particle in a Rigid Box. [07]

An electron is bound by a potential box of infinite height having a width 2.5A°. Calculate the minimum uncertainty in its velocity. [04]

OR

Q.2)	(A)	Derive Schrodinger's Time independent wave equation.	[06]		
	(B)	State Heisenberg's Uncertainty Principle. Illustrate the same with the help of Electron Diffraction Experiment at a Single Slit.	[06]		
	(C)	Write short note on Physical Significance of ψ .	[05]		
Q.3)	(A)	Explain construction and working of He-Ne Gas Laser with neat labelled diagram.	[06]		
	(B)	What is Holography? Write a note on Holography Recording.	[04]		
	(C)	State and explain:	[07]		
		(1) Meissner Effect			
		(2) Critical Fields			
		(3) Zero Resistance			
		$_{\mathrm{OR}}$			
Q.4)	(A)	(1) Explain the Process of Stimulated Emission and Population Inversion.	[04]		
		(2) Explain special properties of Laser.	[04]		
	(B)	What are Ferrates ? Riscuss their properties and uses.	[06]		
	(C)	Discuss applications of Superconductors.	[03]		
Q.5)	(A)	Show that the Fermi-Level lies exactly at the centre of the energy gap in an Intrinsic Semiconductor.	[06]		
	(B)	Obtain an expression for the displacement produced when an electric field acts perpendicular to the motion of an electron.	[06]		
	(C)	Draw energy band diagrams of P-N Junction Diode under Forward Bias and Reverse Bias Conditions.	[04]		
OR					
	6				

[3761]-17 2 Contd.

Q.6)	(A)	Derive an Expression for Conductivity in an Intrinsic and Extrinsic Semiconductors.	[06]
	(B)	Give the principle, construction and working of an Electron Microscope.	[06]
	(C)	Electrons accelerated by a potential of 250V enter the electric field at an angle of incidence 50° and get refracted through an angle of 30°. Find the potential difference between the two regions.	
		SECTION - II	
Q.7)	(A)	What is Proximate Analysis? Explain the method of analysis of each of these constituents along with the significance?	[07]
	(B)	Give composition, boiling range and uses of fractions obtained in distillation of crude oil.	[06]
	(C)	0.72 gm of a fuel containing 80% carbon when burnt in a bomb calorimeter, increased the temperature of water from 27.3°C to 29.1°C. If the calorimeter contains 250 gm of water and its water equivalent is 150 gm. Calculate HCV in kJ/kg.	
Q.8)	(A)	What is meant by Natural Gas? Give composition, properties and applications of LPG and CNG.	[07]
	(B)	What is Biodiesel? Explain the process to get it from animal oil. State advantages of it over conventional diesel.	[06]
	(C)	A product sees has the following percentage composition by volume $CH_4=3.5\%$, $CO=25\%$, $H_2=10\%$, $CO_2=10.8\%$, $N_2=50.7\%$. Calculate theoretical air required per m³ of the gas.	
Q.9)	(A)	What is Dry Corrosion? Discuss the role of nature of oxide formed in oxidation corrosion of metal. State and explain Flling Bedworth Rule.	[07]
	B	How are Metals Coated by Hot Dipping Technique? Give the applications of Galvanising and Tinning.	[06]
	(C)	Distinguish between Cathodic Protection and Anodic Protection.	[04]
		OR	
[3761]]-17	3 P.	T.O.

Q.10)	(A)	What is Wet Corrosion ? Discuss the mechanism of Wet Corrosion.	[07]
	(B)	Explain Corrosion in Zn Coated Iron and Tin Coated Iron, which is more protective ? And Why ?	[06]
	(C)	What happens when ?	[04]
		(1) Impurity is present in metal.	
		(2) Iron Rod is buried in moist soil.	
		(3) Zn Rod is dipped in CuSO ₄ Solution.	
		(4) A Metal under water drop.	
Q.11)	(A)	Give instrumentation involved in UVVisible Spectroscopy.	[06]
	(B)	State the principle and technique involved in Paper Chromatography.	[06]
	(C)	Define the terms :	[04]
		(1) Wavelength	
		(2) Frequency	
		(3) Wavenumber	
		(4) Energy OR	
Q.12)	(A)	Describe principle and experimental setup of Column	
		Chromatography.	[06]
	(B)	Give applications of IR Spectroscopy.	[06]
	(C)	Define the terms:	[04]
		$ \begin{array}{c} (1) \\ (2) \\ \end{array} $	
		Chromatogram	
		(4) Elution	
	D		