Birla Institute of Technology and Science, Pilani

First Semester 2009-2010

AAOC C321: Control Systems Comprehensive Examination (Closed Book)

Date: December 8th, 2009(FN) Time: 3 Hrs MM: 120

Q1. An ac-dc servo system is shown in figure below. The various parameters of this system are as follows:

Amplifier gain $(K_A) = 5 V_{dc}/V_{dc}$; Synchro pair sensitivity $(K_s) = 7 V_{rms}/rad$

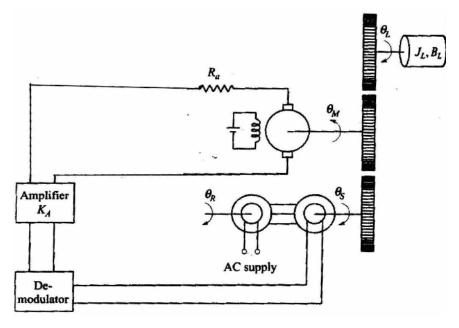
Demodulator gain $(K_d) = 3 V_{dc}/V_{rms}$; Torque constant $(K_T) = 1 Nm/A$

Back e.m.f. constant $(K_b) = 1 \text{ V/rad/s}$; Motor Armature Resistance $(R_a) = 1\Omega$

Moment of Inertia of load $(J_L) = 5 \text{ kg.m}^2$

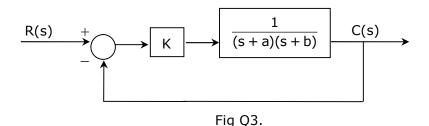
Friction Coefficient of load (B_L) = 2.5 Nm/rad/s

Moment of inertia of motor (J_m) is 1 Kg. m²;


Friction Coefficient of the motor (B_m) is 0.55 Nm/rad/s.

Gear ratios:
$$\frac{M}{1} = \frac{10}{1}$$
 and $\frac{M}{1} = \frac{1}{5}$

For this system,


- (a) Draw the block diagram
- (b) Determine the transfer function $\frac{L(s)}{R(s)}$ and
- (c) Determine the rise time.

[10+6+4]

Q2. Sketch the Nyquist plot for a system whose open loop transfer function is $\frac{K(s+1)}{s^2(s-2)}$, choosing the appropriate Nyquist contour and therefrom determine the range of K (K>0) for which the closed loop system is stable. Verify your answer using Routh stability criterion. [20+5]

- Q3. Consider the system given in Fig Q3. When the system is subjected to a unit step input the output has peak overshoot of 16.3% but ultimately attains the final value of 1 unit. The response to a ramp input has a steady state error of 0.0625 unit.
 - (a) Find the values of K, a & b (all three are \geq 0),
 - (b) For the system with above calculated values, add a suitable error controller (Gain K_1) to get steady state error as zero and determine the range of K_1 for system to be stable,
 - (c) Draw the root contours of the system for two values of K (8 & 13) and $0 < K_1 < \infty$. Keeping the values of a and b as calculated above. [7+ 6+12]

Q4. A control system is represented by the following equations:

$$y = 2x - 4z - 5u$$
; $z = 3y - 3w + z$; $w = 2z$; $u = w + 2z$
For this system

- (a) draw the signal flow graph (without solving the equations) and determine the transfer function $\frac{U(s)}{X(s)}$ using Mason's Gain Formula.
- (b) Suppose the above calculated transfer function is an open loop transfer function for a unity negative feedback system, draw the polar plot of the system and calculate the Gain Margin & Phase Margin of this system.

$$[15+5]$$

Q5. The open loop transfer function of a unity negative feedback system is given by: K

$$\frac{\kappa}{s^2(0.4s+2)}$$

Design the Phase lead compensator (with amplifier) using Bode's magnitude (asymptotic) and phase plots to meet the following specifications:

- Acceleration error constant (K_a) = 5 and
- Phase margin is 10°, take factor of margin as 10°.

Also draw the Bode plots for the compensated system.

(Semi-log graph sheet is provided for the same).

[30]