Code: AE01/AC01/AT01
Time: 3 Hours

JUNE 2011
Subject: MATHEMATICS-I
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of $\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x-y}$ is
(A) 0
(B) 1
(C) -1
(D) limit does not exist
b. If $z=\log \left(x^{2}+x y+y^{2}\right)$, then the value of $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is
(A) 0
(B) 1
(C) 2
(D) 4
c. If $u=f(x-y, y-z, z-x)$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is
(A) x
(B) y
(C) z
(D) 0
d. The value of integral $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} x^{3} y d x d y$ is
(A) $\frac{1}{24}$
(B) $\frac{1}{12}$
(C) $\frac{1}{6}$
(D) $\frac{1}{4}$
e. The solution of the differential equation $y \frac{d y}{d x}+x=0$ is
(A) $x^{2}-y^{2}=c^{2}$
(B) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}^{2}$
(C) $x^{2} y^{2}=c^{2}$.
(D) None of these.
f. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=e^{3 x}$ is
(A) $y=\left(c_{1}+c_{2} x\right) e^{3 x}+x e^{3 x}$
(B) $y=c_{1} e^{x}+c_{2} e^{-3 x}+x e^{3 x}$
(C) $y=c_{1} e^{x}+c_{2} e^{3 x}+\frac{x e^{3 x}}{2}$
(D) $y=c_{1} e^{-x}+c_{2} e^{3 x}+\frac{x}{2} e^{3 x}$
g. The rank of the matrix $\left[\begin{array}{cccc}3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \\ 10 & 11 & 12 & 13\end{array}\right]$ is
(A) 4
(B) 3
(C) 2
(D) 1
h. If two eigen values of $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ are 2 and 3 , then third eigen value is
(A) 1
(B) -1
(C) 4
(D) 6
i. The value of $\frac{d}{d x}\left(J_{0}(x)\right)$ is
(A) $\mathrm{J}_{1}(\mathrm{x})$
(B) $-\mathrm{J}_{1}(\mathrm{x})$
(C) $\mathrm{xJ}_{1}(\mathrm{x})$
(D) $-x J_{1}(x)$
j. The value of $\int_{-1}^{1} P_{2}(x) P_{3}(x) d x$ is
(A) 0
(B) 1
(C) -1
(D) none of these

Answer any FIVE Questions out of EIGHT Questions.
 Each Question carries 16 marks.

Q. 2 a. If z is a homogeneous function of x, y of degree n , prove using Euler's
theorem that $x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=n(n-1) z$.
b. If $x^{x} y^{y} z^{z}=c$, show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \log (e x))^{-1}$
Q. 3 a. Expand $\sin (x y)$ in power of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$, upto the second degree terms
b. Change the order of integration and evaluate the integral

$$
\begin{equation*}
\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y \tag{8}
\end{equation*}
$$

Q. 4 a. Discuss the maximum and minimum values of $\sin x \sin y \sin (x+y)$
b. Solve the differential equation $(1+x+y+x y)^{2} \frac{d y}{d x}=1$
Q. 5 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=\sin x+x e^{3 x}$
b. Use method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \log x$.
Q. 6 a. Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \log x$.
b. Use elementary row transformations to find the inverse of $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
Q. 7 a. For what values of k, the equation $x+y+z=1,2 x+y+4 z=k$ and $4 x+y+10 z=k^{2}$ have a solution and solve them completely in each case.
b. Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Q. $8 \quad$ a. Define a unitary matrix and show that $\left[\begin{array}{cc}\alpha+\mathrm{i} \gamma & -\beta+\mathrm{i} \delta \\ \beta+i \delta & \alpha-\mathrm{i} \gamma\end{array}\right]$ is unitary matrix if $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$.
b. Solve in series the equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+y=0$.
Q. 9 a. Show that $J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$
b. Show that $\int_{-1}^{+1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}$

