
Code: A-01/C-01/T-01 Subject: MATHEMATICS-I 

Time: 3 Hours                                                                                                     Max. Marks: 100  

  

NOTE: There are 11 Questions in all. 

  

       Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in 

the space provided for it in the answer book supplied.  

       Answer any THREE Questions each from Part I and Part II. Each of these 

questions carries 14 marks. 

       Any required data not explicitly given, may be suitably assumed and stated. 

  

  

Q.1   Choose the correct or best alternative in the following: (2x8) 

  

a. a.       The value of limit  

    

    (A)  equals 0. (B)  equals . 

   (C)  equals 1. (D)  does not exist. 

  

b. b.      If  then  equals 

(A) (A)    . (B)  . 

(C)  . (D)  . 

  

  c. The function  has 

    

(A) (A)     a minimum at (0, 0).  

(B) (B)     neither minimum nor maximum at (0, 0).  

(C) (C)     a minimum at (1, 1).  

(D) (D)    a maximum at (1, 1). 

  

  d. The family of orthogonal trajectories to the family , where k is an arbitrary 

constant, is  

  

   (A)  . (B)  . 
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(C) (C)    . (D)  . 

  

  e. Let  be two linearly independent solutions of the differential equation 

.  Then , where are constants is a solution of this 

differential equation for     

    

(A) (A)     . (B) . 

(C)  no value of . (D) all real .  

  

  f. If A, B are two square matrices of order n such that AB=0, then rank of       

  

(A) (A)     at least one of A, B is less than n.  

(B) (B)     both A and B is less than n. 

(C) (C)     none of A, B is less than n.  

(D) (D)    at least one of A, B is zero. 

  

  g. A  real matrix has an eigenvalue i, then its other two eigenvalues can be 

  

   (A)  0, 1. (B)  -1, i.                                                  (C)  2i, 

-2i. (D)  0, -i. 

   

  h. The integral , n>1, where  is the Legendre’s polynomial 

of degree n, equals 

  

   (A)  1. (B) .           (C)  0.

 (D)  2.  

  

PART I 

Answer any THREE questions. Each question carries 14 marks. 

  

 Q.2 a. Compute  and   for the function  

     (6)

  

  b. Let v be a function of (x, y) and x, y are functions of  defined by   

  x
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   where   Show that . (8)

  

 Q.3 a. Expand  near (1, 1) upto 3
rd

 degree terms by Taylor’s series. (7) 

  

  b. Find the extreme value of   subject to the conditions 

and . (7)  

    

 Q.4 a. Find the rank of the matrix 

  

     (6) 

  

  b. Let                            

                              

                   be a linear transformation from  to  

                   and                        

                             

                   be a linear transformation from  to .  

                    Find the linear transformation from  to  by inverting 

appropriate matrix and matrix multiplication. (8)  

     

 Q.5 a. Prove that the eigenvalues of a real matrix are real or complex conjugates in pairs 

and further if the matrix is orthogonal, then eigenvalues have absolute value 1.

 (6)   
      

  b. Find eigenvalues and eigenvectors of the matrix . (8) 
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 Q.6 a. Find a matrix X such that  is a diagonal matrix, where .  

Hence compute .  (8) 
   

  b. Prove that a general solution of the system  

                    
                   can be written as  

   + + where 

 are arbitrary.  (6) 
  

  

  

  

  

  

  

PART II 

Answer any THREE questions. Each question carries 14 marks. 

  

 Q.7 a. Let  Recognise 

the region R of integration on the r.h.s. and then evaluate the integral on the right 

in the order indicated. (7) 

  b. Compute the volume of the solid bounded by the surfaces  and 

. (7) 

     

 Q.8 a. Let  be an integrating factor for differential equation       Mdx+Ndy=0 and 

 is a solution of this equation, then show that  is also an 

integrating factor of this equation, G being a non-zero differentiable function of 

.  (6) 

   

b.   Solve the initial value problem . (8) 

       

Q.9    a. Find general solution of differential equation . (7) 

  

  b. Solve the boundary value problem    
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   . (7) 

Q.10  a. Solve the differential equation . (5) 

  

 b.  Using power series method find a fifth degree polynomial approximation to the 

solution of initial value problem 

        . (9)

   

  

Q.11  a. Let  denote the Bessel’s function of first kind.  Find the generating function of 

the sequence .  Hence prove that 

                     (7) 

  

   b.  Show that for Legendre polynomials  

              (7) 
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