Code: A-01/C-01/T-01 Time: 3 Hours

NOTE: There are 11 Questions in all.

- • Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied.
- • Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
- • Any required data not explicitly given, may be suitably assumed and stated.

d. The family of orthogonal trajectories to the family $y(x-k)^2$, where k is an arbitrary constant, is

(A)
$$y^{3/2} = \frac{3}{4}(c-x)$$
. (B) $x^{3/2} = (y-c)^2$

(C) (C)
$$(y-c)^2 = \frac{3}{4}x$$
 (D) $y^2 = \frac{3}{2}(c-x)$

e. Let y_1, y_2 be two linearly independent solutions of the differential equation $yy'' - (y')^2 = 0$. Then $c_1y_1 + c_2y_2$, where c_1, c_2 are constants is a solution of this differential equation for

(A) (A)
$$c_1 = c_2 = 0$$
 only. (B) $c_1 = 0$ or $c_2 = 0$.

- (C) no value of c_1, c_2 . (D) all real c_1, c_2 .
- f. If A, B are two square matrices of order n such that AB=0, then rank of
 - (A) (A) at least one of A, B is less than n.
 - **(B) (B)** both A and B is less than n.
 - (C) (C) none of A, B is less than n.
 - (D) (D) at least one of A, B is zero.
- g. A 3×3 real matrix has an eigenvalue i, then its other two eigenvalues can be

h. The integral
$$\stackrel{\pi}{=} P_n(\cos \theta) \sin 2\theta \, d\theta$$

of degree n, equals
(A) 1. (B) $\frac{1}{2}$. (C) 0.

(A) 1. (B)
$$\frac{2}{2}$$
. (C) 0. (D) 2.

PART I Answer any THREE questions. Each question carries 14 marks.

Q.2 a. Compute
$$f_{xy}(0,0)$$
 and $f_{yx}(0,0)$ for the function

$$f(x,y) = \begin{cases} \frac{xy^3}{x+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
(6)

b. Let v be a function of (x, y) and x, y are functions of (θ, ϕ) defined by

$$x + y = 2e^{\theta} \cos \phi$$

$$x - y = 2ie^{\theta} \sin \phi$$

where $i = \sqrt{-1}$. Show that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = \frac{\partial v}{\partial \theta}$. (8)

- **Q.3** a. Expand x^y near (1, 1) upto 3^{rd} degree terms by Taylor's series. (7)
 - b. Find the extreme value of $x^2 + y^2 + z^2 + xy + xz + yz$ subject to the conditions x + y + z = 1 and x + 2y + 3z = 3. (7)
- **Q.4** a. Find the rank of the matrix

۶]	3	1	0
3	0	1	-6
1	1	1	1
0	-6	1	9

b. Let
$$y_1 = 5x_1 + 3x_2 + 3x_3$$

 $y_2 = 3x_1 + 2x_2 - 2x_3$
 $y_3 = 2x_1 - x_2 + 2x_3$

be a linear transformation from (x_1, x_2, x_3) to (y_1, y_2, y_3) and $z_1 = 4x_1 + 2x_3$ $z_2 = x_2 + 4x_3$

$$z_3 = 5x_3,$$

b.

be a linear transformation from (x_1, x_2, x_3) to (z_1, z_2, z_3) .

Find the linear transformation from (z_1, z_2, z_3) to (y_1, y_2, y_3) by inverting appropriate matrix and matrix multiplication. (8)

Q.5 a. Prove that the eigenvalues of a real matrix are real or complex conjugates in pairs and further if the matrix is orthogonal, then eigenvalues have absolute value 1.

(6)

Find eigenvalues and eigenvectors of the matrix
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$$
 (8)

- **Q.6** a. Find a matrix X such that $X^{-1}AX$ is a diagonal matrix, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$. Hence compute A^{50} . (8)
 - b. Prove that a general solution of the system $8x_1 - 4x_2 + 10x_5 = 1$ $x_2 + x_4 - x_5 = 2$

 $x_3 - 3x_4 + 2x_5 = 0$

can be written as

$$(x_1, x_2, x_3, x_4, x_5) = \left(\frac{9}{8}, 2, 0, 0, 0\right)_+ \alpha \left(-\frac{1}{2}, -1, 3, 1, 0\right)_+ \beta \left(-\frac{3}{4}, 1, -2, 0, 1\right)_{\text{where}} \alpha, \beta \text{ are arbitrary.}$$

$$(6)$$

PART II Answer any THREE questions. Each question carries 14 marks.

Q.7 a. Let $\int_{0}^{1} \int_{1}^{2} \frac{1}{x^2 + y^2} dx dy + \int_{1}^{2} \int_{y}^{2} \frac{1}{x^2 + y^2} dx dy = \iint_{R} \frac{1}{x^2 + y^2} dy dx$ Recognise the region R of integration on the r h s, and then evaluate the integral on the right

the region R of integration on the r.h.s. and then evaluate the integral on the right in the order indicated. (7)

b. Compute the volume of the solid bounded by the surfaces $z = \sqrt{4 - x^2 - y^2}$ and $z = \frac{1}{3}(x^2 + y^2)$. (7)

Q.8 a. Let $\mu(x, y)$ be an integrating factor for differential equation Mdx+Ndy=0 and $\Psi(x, y) = 0$ is a solution of this equation, then show that $\mu G(\Psi)$ is also an integrating factor of this equation, G being a non-zero differentiable function of Ψ . (6)

b. Solve the initial value problem
$$\frac{dy}{dx} = y^2 \left(\ell n(x) + \frac{1}{x} \right) + y, \ y(0) = 1$$
. (8)

- **Q.9** a. Find general solution of differential equation $y'' + y' = \sec x$. (7)
 - b. Solve the boundary value problem

$$x^{3}y'' - x^{2}y' + xy = 1, y(1) = \frac{1}{4}, y(e) = e + \frac{1}{4e}$$
 (7)

Q.10 a. Solve the differential equation $y^{iv} + 32y'' + 256y = 0$. (5)

b. Using power series method find a fifth degree polynomial approximation to the solution of initial value problem $(x - y) = \frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$

$$(x-1)y'' + xy' + y = 0, y(0) = 2, y'(0) = -1$$
 (9)

- Q.11 a. Let $J_v(x)$ denote the Bessel's function of first kind. Find the generating function of the sequence $\{J_v(x), v = 0, \pm 1, \pm 2, \dots, \}$. Hence prove that $\cos x = J_0(x) 2J_2(x) + 2J_4(x) \dots$ $\sin x = 2J_1(x) - 2J_3(x) + 2J_5(x) - \dots$ (7)
 - b. Show that for Legendre polynomials $P_n(x)$ $\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}, n = 1, 2, \dots$ (7)