NOTE: There are 11 Questions in all.

- - Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied.
- - Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
- - Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or best alternative in the following:

a. a. The value of limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$
(A) equals 0 .
(B) equals $\frac{1}{2}$.
(C) equals 1.
(D) does not exist.
b. b. If $u=x^{2}-y^{2}, v=x y$ then $\frac{\partial x}{\partial u}$ equals
(A) (A) $\frac{x}{2\left(x^{2}+y^{2}\right)}$.
(B) $\frac{y}{2\left(x^{2}+y^{2}\right)}$.
(C) $\frac{y}{x^{2}+y^{2}}$.
(D) $\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$.
c. The function $f(x, y)=y^{2}-x^{3}$ has
(A) (A) a minimum at $(0,0)$.
(B) (B) neither minimum nor maximum at $(0,0)$.
(C) (C) a minimum at $(1,1)$.
(D) (D) a maximum at $(1,1)$.
d. The family of orthogonal trajectories to the family $y(x-k)^{2}$, where k is an arbitrary constant, is
(A) $\mathrm{y}^{3 / 2}=\frac{3}{4}(\mathrm{c}-\mathrm{x})$.
(B) $x^{3 / 2}=(y-c)^{2}$.
(C) (C) $(y-c)^{2}=\frac{3}{4} x$.
(D) $\mathrm{y}^{2}=\frac{3}{2}(\mathrm{c}-\mathrm{x})$.
e. Let y_{1}, y_{2} be two linearly independent solutions of the differential equation $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}=0$. Then $c_{1} y_{1}+c_{2} y_{2}$, where c_{1}, c_{2} are constants is a solution of this differential equation for
(A) (A) $\mathrm{c}_{1}=\mathrm{c}_{2}=0$ only.
(B) $\mathrm{c}_{1}=0$ or $\mathrm{c}_{2}=0$.
(C) no value of $\mathrm{c}_{1}, \mathrm{c}_{2}$.
(D) all real ${ }^{c_{1}}, \mathrm{c}_{2}$.
f. If A, B are two square matrices of order n such that $A B=\mathbf{0}$, then rank of
(A) (A) at least one of A, B is less than n.
(B) (B) both A and B is less than n .
(C) (C) none of A, B is less than n .
(D) (D) at least one of A, B is zero.
g. A 3×3 real matrix has an eigenvalue i, then its other two eigenvalues can be
(A) 0,1 .
(B) -1, i.
(C) 2 i , -2 i .
(D) $0,-\mathrm{i}$.
$\int_{0}^{\pi} \mathrm{P}_{\mathrm{n}}(\cos \theta) \sin 2 \theta \mathrm{~d} \theta$
h. The integral 0
, $n>1$, where $P_{n}(x)$ is the Legendre's polynomial of degree n, equals
(A) 1 .
(B) $\frac{1}{2}$.
(C) 0 .
(D) 2 .

PART I

Answer any THREE questions. Each question carries 14 marks.
Q. 2 a. Compute $f_{x y}(0,0)$ and $f_{y x}(0,0)$ for the function

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x y^{3}}{x+y^{2}},(x, y) \neq(0,0) \tag{6}\\
0 \quad,(x, y)=(0,0)
\end{array}\right.
$$

b. Let v be a function of (x, y) and x, y are functions of (θ, ϕ) defined by

$$
\begin{aligned}
& x+y=2 e^{\theta} \cos \phi \\
& x-y=2 i e^{\theta} \sin \phi
\end{aligned}
$$

where $i=\sqrt{-1}$. Show that $x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}=\frac{\partial v}{\partial \theta}$.
Q. 3 a. Expand x^{y} near $(1,1)$ upto $3^{\text {rd }}$ degree terms by Taylor's series.
b. Find the extreme value of $x^{2}+y^{2}+z^{2}+x y+x z+y z$ subject to the conditions

$$
\begin{equation*}
x+y+z=1 \text { and } x+2 y+3 z=3 \tag{7}
\end{equation*}
$$

Q. 4 a. Find the rank of the matrix

$$
\left[\begin{array}{cccc}
9 & 3 & 1 & 0 \tag{6}\\
3 & 0 & 1 & -6 \\
1 & 1 & 1 & 1 \\
0 & -6 & 1 & 9
\end{array}\right]
$$

b. Let $y_{1}=5 x_{1}+3 x_{2}+3 x_{3}$

$$
\begin{aligned}
& \mathrm{y}_{2}=3 \mathrm{x}_{1}+2 \mathrm{x}_{2}-2 \mathrm{x}_{3} \\
& \mathrm{y}_{3}=2 \mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{3}
\end{aligned}
$$

be a linear transformation from $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ to $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$
and $\mathrm{z}_{1}=4 \mathrm{x}_{1}+2 \mathrm{x}_{3}$

$$
z_{2}=x_{2}+4 x_{3}
$$

$$
z_{3}=5 x_{3}
$$

be a linear transformation from $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ to $\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\right)$.
Find the linear transformation from $\left(z_{1}, z_{2}, z_{3}\right)$ to $\left(y_{1}, y_{2}, y_{3}\right)$ by inverting appropriate matrix and matrix multiplication.
Q. 5 a. Prove that the eigenvalues of a real matrix are real or complex conjugates in pairs and further if the matrix is orthogonal, then eigenvalues have absolute value 1.
(6)
b. Find eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
Q. 6 a. Find a matrix X such that $X^{-1} A X$ is a diagonal matrix, where $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.

Hence compute A^{50}.
b. Prove that a general solution of the system
$8 \mathrm{x}_{1}-4 \mathrm{x}_{2}+10 \mathrm{x}_{5}=1$
$\mathrm{x}_{2}+\mathrm{x}_{4}-\mathrm{x}_{5}=2$
$\mathrm{x}_{3}-3 \mathrm{x}_{4}+2 \mathrm{x}_{5}=0$
can be written as
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)=\left(\frac{9}{8}, 2,0,0,0\right)_{+} \alpha\left(-\frac{1}{2},-1,3,1,0\right)_{+} \beta\left(-\frac{3}{4}, 1,-2,0,1\right)_{\text {where }}$
α, β are arbitrary.

PART II

Answer any THREE questions. Each question carries 14 marks.
Q. $7 \quad$ a. Let $\int_{0}^{1} \int_{1}^{2} \frac{1}{x^{2}+y^{2}} d x d y+\int_{1}^{2} \int_{y}^{2} \frac{1}{x^{2}+y^{2}} d x d y=\iint_{R} \frac{1}{x^{2}+y^{2}} d y d x$

Recognise the region R of integration on the r.h.s. and then evaluate the integral on the right in the order indicated.
b. Compute the volume of the solid bounded by the surfaces $\mathrm{z}=\sqrt{4-\mathrm{x}^{2}-\mathrm{y}^{2}}$ and $\mathrm{z}=\frac{1}{3}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$.
Q. 8 a. Let $\mu(x, y)$ be an integrating factor for differential equation $M d x+N d y=0$ and $\Psi(x, y)=0$ is a solution of this equation, then show that $\mu \mathrm{G}(\Psi)$ is also an integrating factor of this equation, G being a non-zero differentiable function of Ψ.
b. Solve the initial value problem $\frac{d y}{d x}=y^{2}\left(\ell \operatorname{n}(x)+\frac{1}{x}\right)+y, y(0)=1$.
Q. 9 a. Find general solution of differential equation $y^{\prime \prime \prime}+y^{\prime}=\sec x$.
b. Solve the boundary value problem

$$
\begin{equation*}
x^{3} y^{\prime \prime}-x^{2} y^{\prime}+x y=1, y(1)=\frac{1}{4}, \quad y(e)=e+\frac{1}{4 e} \tag{7}
\end{equation*}
$$

Q. 10 a. Solve the differential equation $y^{i v}+32 y^{\prime \prime}+256 y=0$.
b. Using power series method find a fifth degree polynomial approximation to the solution of initial value problem

$$
\begin{equation*}
(x-1) y^{\prime \prime}+x y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=-1 \tag{9}
\end{equation*}
$$

Q. 11 a. Let $J_{v}(x)$ denote the Bessel's function of first kind. Find the generating function of the sequence $\left\{\mathrm{J}_{\mathrm{v}}(\mathrm{x}), \mathrm{v}=0, \pm 1, \pm 2 \ldots \ldots \ldots\right\}$. Hence prove that $\cos x=J_{0}(x)-2 J_{2}(x)+2 J_{4}(x)-\ldots \ldots \ldots .$. $\sin x=2 J_{1}(x)-2 J_{3}(x)+2 J_{5}(x)-\ldots \ldots \ldots .$.
b. Show that for Legendre polynomials $P_{n}(x)$

$$
\begin{equation*}
\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}, n=1,2, \ldots \ldots \ldots \tag{7}
\end{equation*}
$$

