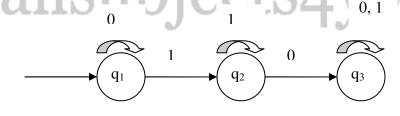
Formal Languages & Automation Theory (CS-404, Dec-2007)


Note: Section A is compulsory. Attempt any four questions from Section-B and any two from Section-C.

Section-A

- 1. a) Name the operations that can be performed on a language.
 - b) Differentiate between DFA and NFA.
 - c) Can two Grammers of different type generate the same language? Prove.
 - d) Find the Grammer accepting sets of all strings over $\{0, 1\}$ consisting of equal number of 0's and 1's.
 - e) Define the term Linear Grammer.
 - f) What do you mean by one sided context sensitive Grammer?
 - g) Differentiate between TM and Linear Bounded Automata.
 - h) Differentiate between Moore and Mealy machine.
 - i) Find the language generated by $S \rightarrow 0S1/0A1$, $A \rightarrow 1A0/10$.
 - j) What is the advantage of Kuroda normal form?

Section-B

- 2. Explain in brief the various types of languages. Also name the automata accepting those languages.
- 3. (a) Why do we need regular expressions?
- (b) Construct a regular expression for the given state diagram.

- 4. Explain in brief the properties of LL(k) grammers.
- 5. Show that the grammers $S \rightarrow a/abs b/aAb A \rightarrow bs/aAAb$ is ambiguous.
- 6. Construct a pda (Push down automata) by empty store for $\{a^mb^n / m > n \ge 1\}$

Section-C

- 7. (a) Reduce the following Grammer to Chomsky normal form $S \rightarrow ABSB / A / AaB, A \rightarrow Bs / aAAb$
 - (b) Differentiate between context free and regular Grammer.
- 8. Design Turing machine that can accept the set of all palindromes over {0,
- 1}. Also verify its functioning using an example input.
- 9. Write short notes on any two:
 - (a) Desivation languages
 - (b) Cellular Automata
 - (c) Syntax Analysis