ROLL NO.		
----------	--	--

ALCCS - OLD SCHEME

Code: CS31

Subject: OPERATING SYSTEMS

Max. Marks: 100

AUGUST 2011

NOTE:

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

Q.1

- a. Explain the terms: Waiting time, Turnaround time, Response time and Throughput.
- b. What is time slice? What is the importance of this value in a Time Sharing Operating System?
- c. Give the schematic view of Virtual File Systems and describe the concept behind it.
- d. What is the need of Inter Process Communication and how is it achieved?
- e. Define the term thrashing and also explain how it affects the overall performance of CPU.
- f. Differentiate between Dynamic relocation and Dynamic loading.
- g. Describe role of Interrupt Handlers in device management. (7×4)
- Q.2 a. Describe the advantages of Input / Output interfaces. What all components constitutesI/O interface? (6)
 - b. Explain the inverted page table mechanism of memory management. How a logical address is translated into physical address? (8)
 - c. What is compaction? How is it used to reduce external fragmentation in memory management? (4)
- Q.3 a. When does a race condition arise and how it is resolved? In the following situation determine whether the system is in safe state. If so, give sequence of process.
 There are five process P₀, P₁, P₂, P₃ and P₄ and three resource types A (10 instances), B (5 instances) and C (7 instances). Snapshots a time T₀ is as follow: (12)

Process	Allocation A B C	Max A B C	Available A B C
P_0	0 1 0	7 5 3	3 3 2
P ₁	2 0 0	3 2 2	
P_2	3 0 2	9 0 2	
P ₃	2 1 1	2 2 2	
P_4	0 0 2	4 3 3	

- b. For reference strings: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5; determine number of page faults for number of frame = 3 using LRU algorithm. (6)
- Q.4 a. What is 'Monitor'? Briefly describe its role in Distributed Operating System. (4)
 - b. Give an example to clarify the concept of atomic transaction. How atomic transaction helps in achieving synchronization in distributed atomic environment? (8)
 - c. Explain the SCAN algorithm and find the total head movement for seek job queue (98, 183, 27, 122, 14, 124, 65, 67) where head pointer is at 53. (6)
- Q.5 a. What all information are written in super block of a FS created under UNIX OS? (6)
 - b. Write the mechanism adopted in Trap Handling in Window NT. (6)
 - c. Differentiate between stateless and stateful file services. (6)
- Q.6 a. How does a new process created in UNIX OS? Explain. (6)
 - b. What is thread and how is it different from a process? (4)
 - c. How synchronization is achieved in Distributed Operating System using Mutex? (8)
- **Q.7** Write short notes on the followings: