12/20/11 ALCCS

ALCCS

Code: CS31		Subject: OPERATING SYSTEMS	
Time: 3 Hours	B	Max. Marks: 100	
	· -		

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- Q.1 a. How do system calls differ from ordinary library routines, though both are supplied by the language?
 - b. Explain the difference between starvation and blocking.
 - c. What two events can cause a process to loose control of the processor?
 - d. A system is in an unsafe state. Is it possible for the processes to complete their execution without entering deadlock? If yes, show how?
 - e. How are critical section and the principle of mutual exclusion related to each other?
 - f. Explain the user authentication process governed by an operating system.
 - g. What is multiprocessor system and how the operating system for multiprocessor is designed? (7 \square 4)
- Q.2 a. Assuming a cluster size of 512 bytes, calculate the percentage in file space due to incomplete filling of last clusters, for the file sizes (i) 1200 bytes (ii) 20,000 bytes.
 - b. A CPU scheduling algorithm determines an order for the execution of its scheduled processes. Given n processes to be scheduled on one processor, how many different possible schedules are there? Give a formula in terms of (9+9)
 - Q.3 a. What is the concept of virtual memory system with an example? Is it possible to implement it with segmentation? Explain how?
 - b. At some point in time, the following holes (in the order) are created by a variable partition memory. 20K, 15K, 40K, 60K, 10K, 25K. For a new process of 25 K, which hole would be filled using best fit, first fit, and worst fit?

 (9 + 9)
- **Q.4** a. What is Semaphore? Write the code for Producer-Consumer problem using Semaphore.
 - b. Consider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock-free if the following two conditions hold:
 - (i) The maximum need of each process is between 1 and m resources
 - (ii) The sum of all maximum needs is less than m + n

(9 + 9)

Q.5 a. Assume that we have a paging system with page table stored in memory. If a memory reference takes 200 ns, how long does a paged memory reference take? If we add associative registers and 75% of all page table references are found in the associative registers, what is the effective memory reference time? Assume that finding a page table entry in the

12/20/11 **ALCCS**

associative registers takes zero time if the entry is there.

b. For the given snapshot of a system:

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P1	0 0 1 2	0012	1 5 2 0
P2	1000	1750	
P3	1 3 5 4	2356	
P4	0632	0652	
P5	0014	0656	

Answer the following using Banker's Algorithm:

(i) matrix Need?

(ii) (iii)

arrives for (0, 42, 0), will it be granted?

What is the content of the

Is the system in a safe state? If a request from process P2

(9 + 9)

- a. What is the "Locality of Reference" concept and why it is important? What is the need to have a logical to physical **Q.6** map? Is it by design or incidental that the page sizes are chosen to be power of two?
 - b. To provide a single image of the OS, distributed OS has to address number of transparency issues. Briefly discuss few important transparency issues in distributed OS. (9 + 9)
- **Q.7** Write Short notes on the following
 - Directing Implementation. (i) Network OS, Multiprocessor (ii)

OS, and Distributed OS.

(iii) Bernstein's Condition for

concurrency. (6+6+6)