NOTE:

1.	Answer question 1 and any FOUR questions from 2 to 7.				
2.	Parts of the same question should be answered together and in the same				
	sequence.				

Time: 3 Hours

Total Marks: 100

1.

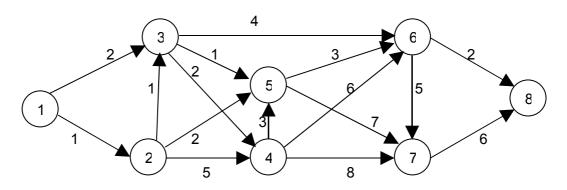
- a) In Operations Research (OR) there are two distinct types of computations: those involving simulation and those dealing with mathematical models. Discuss them briefly. Why are computations in OR mathematical models typically iterative?
- b) A paper mill produce two grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X and 300 tons of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs. 200 and Rs. 500 per ton. Formulate the above as a linear programming problem to maximize profit.
- c) Consider the following problem:

minimize $z = 3x_1 + 4x_2 - 5x_3$

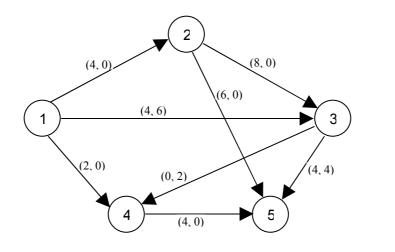
subject to

 $\begin{array}{l} 2x_1 + 3x_2 - 5x_3 \geq 10 \\ x_1 - 2x_2 - 3x_3 \leq 8 \\ x_1 , x_2 , x_3 \geq 0 \end{array}$

Define the dual problem.


- d) What is Critical Path Method (CPM)? What are its main objectives?
- e) Arrivals at a telephone both are considered to be following Poisson process with an average time of 10 minute between one arrival and the next. Length of a phone call is assumed to be distributed exponentially with mean 3 minutes.
 - i) What is the probability that a person arriving at the booth will have to wait?
 - ii) What is the average length of queue?
- f) Determine the optimal sequence of jobs, which minimizes the total elapsed time based on the following information.

Processing times on the machines A, B, C					
Job	Α	В	С		
1	3	3	5		
2	8	4	8		
3	7	2	10		
4	5	1	7		
5	2	5	6		


- g) The demand rate for an item in a company is 18000 units per year. The company can produce at the rate of 3000 per month. The set-up-cost is Rs. 500 per order and the holding cost is Rs. 0.15 per unit per month. Calculate:
 - i) optimum manufacturing quantity
 - ii) maximum inventory.

(7x4)

- 2.
- a) The network in the following figure represents the distances in miles between various cities i, i =1, 2,, 8. Find the shortest routes between the following pairs of cities:
 - i) City 1 and city 8.
 - ii) City 2 and City 6.

b) Determine the maximum flow between nodes 1 and 5 for the network given below:

(9+9)

3. Consider the integer linear programming problem:

maximize $Z = 7x_1 + 9x_2$

subject to

 $-x_1 + 3x_2 \le 6$

 $7x_1 + x_2 \le 35$

 x_1 , x_2 nonnegative integers.

- a) Using branch-and-bound algorithm (B&B), obtain the optimal solution.
- b) Outline briefly the steps of B&B algorithm
- c) How will you modify B&B algorithm to fit minimization problem?

(8+6+4)

```
4.
```

a) Solve the following linear programming problem by simplex method.

Maximize $z = x_1 + x_2 + 3x_3 - x_4$ subject to $x_1 + 2x_2 + 3x_3 = 15,$ $2x_1 + x_2 + 5x_3 = 20,$ $x_1 + 2x_2 + x_3 + x_4 = 10$ where $x_1, x_2, x_3, x_4 > 0$ b) A company has three plants A, B and C, 3 warehouses X, Y, Z. The number of units available at the plants is 60, 70, 80 and the demand at X, Y, Z are 50, 80, 80 respectively. The unit cost of the transportation is given in the following table:

	Х	Y	Z
А	8	7	3
В	3	8	9
С	11	3	5

Find the allocation so that the total transportation cost is minimum.

(9+9)

5.

- a) A shipping company has single unloading berth with ships arriving in a Poisson fashion at an average rate of there per days. The unloading time distribution of a ship with n unloading crews is found to be exponential with average unloading time 1/2n days. The company has large labour supply without regular working hours, and to avoid long waiting lines, the company has a policy of using as many unloading crew on a ship as there are ships waiting in line or being unloaded.
 - i) Under these conditions what will be the average number of unloading crew working at any time?
 - ii) What is the probability that more than 4-crew will be needed?
- b) A manufacturing company purchases 9,000 parts of a machine for its annual requirements ordering 1-month usage at a time. Each part cost Rs. 20. The ordering cost per order is Rs. 15 and the carrying charges are 15% of the average inventory per year. You have been asked to suggest a more economical purchasing policy for the company. What advice would you offer? And how much would it save the company per year?

(9+9)

6.

a) The activities for buying a new car are summarized below. Draw the network model and carry out the computations.

Activity	Description	Immediate predecessor(s)	Duration (days)
А	Conduct feasibility study	-	3
В	Find potential customer for present car	A	14
С	List possible models	A	1
D	Research all possible models	С	3
E	Conduct interviews with machines	С	1
F	Collect dealer propaganda	С	2
G	Compile and organize all pertinent information	D, E, F	1
Н	Choose top all three choices	G	1
1	Test drive all three choices	Н	3
J	Gather warranty and financing information	Н	2
K	Chosen one car	I, J	2
L	Compare dealer and chosen dealer	K	2
М	Search for desired color and options	L	4
Ν	Test drive chosen model once again	L	1
0	Purchase new car	B, M, N	3

b) Discuss the problem of n jobs and m machines and obtains the sequence that minimizes the elapsed time required to complete the following tasks. The processing time is given in hours. Calculate also the idle time.

	Job	1	2	3	4	5	6	7	8	9	10
	M1	2	3	4	15	3	6	10	15	2	8
	M2	6	2	4	10	6	9	15	3	1	0
-											(9+9)

7.

a) Solve the following problem using dynamic programming.

Minimize z =
$$\sum_{j=1}^{n} y_j^2$$

subject to the constraints

 $\mathop{\Pi}\limits_{j=1}^{n} \ y_{j}$ = b , $y_{j} \!\geq\! 0$ for all j .

b) For a game with the following payoff matrix, determine the optimal strategy and the value of the game.

$$A \begin{bmatrix} 6 & -3 \\ -3 & 0 \end{bmatrix}$$
(12+6)