MATHEMATICAL SCIENCES

This Test Booklet will contain 120 (20 Part `A'+40 Part `B+60 Part 'C') Muftiple Choice Questions (MCQs) Both in Hindi and English. Candidates are required to answer 15 in part 'A', 25 in Part ' B ' and 20 questions in Part ' C ' respectively (No. of questions to attempt may vary from exam to exam). In case any candidate answers more than 15,25 and 20 questions in Part A, B and C respectively only first 15, 25 and 20 questions in Parts A, B and C respectively will be evaluated. Each questions in Parts 'A' carries two marks, Part ' B ' three marks and Part ' C ' 4.75 marks respectively. There will be negative marking @ 0.5 marks in Part ' A ' and 0.75 in part ' B ' for each wrong answers. Below each question in Part ' A ' and Part ' B ', four alternatives or responses are given. Only one of these alternatives is the 'CORRECT' answer to the question. Part ' C ' shall have one or more correct options. Credit in a question shall be given only on identification of ALL the correct options in Part ' C '. No credit shall be allowed in a question if any incorrect option is marked as correct answer. No partial credit is allowed.

MODEL QUESTION PAPER

PART A

May be viewed under heading "General Science"

PART B

21. The sequence $\mathrm{a}_{\mathrm{n}}=\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}$

1 converges to 0
2. converges to $1 / 2$

3 converges to $1 / 4$
4 does not converge.
22. Let $x_{n}=n^{1 / n}$ and $y_{n}=(n!)^{1 / n}, n \geq 1$ be two sequences of real numbers. Then
$1\left(x_{n}\right)$ converges, but $\left(y_{n}\right)$ does not converge
$2\left(\mathrm{y}_{\mathrm{n}}\right)$ converges, but $\left(\mathrm{x}_{\mathrm{n}}\right)$ does not converge

3 both $\left(\mathrm{x}_{\mathrm{n}}\right)$ and $\left(\mathrm{y}_{\mathrm{n}}\right)$ converge
$4 \quad$ Neither $\left(\mathrm{x}_{\mathrm{n}}\right)$ nor $\left(\mathrm{y}_{\mathrm{n}}\right)$ converges
23. The set $\{x \in \mathbb{R}: x \sin x \leq 1, x \cos x \leq 1\} \subset \mathbb{R}$ is

1 a bounded closed set
2 a bounded open set
3 an unbounded closed set.
4 an unbounded open set.
24. Let $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ be continuous such that $\mathrm{f}(\mathrm{t}) \geq 0$ for all t in $[0,1]$. Define
$\mathrm{g}(\mathrm{x})=\int_{0}^{x} f(t) d t$ then
1 g is monotone and bounded
2 g is monotone, but not bounded
3 g is bounded, but not monotone
$4 \quad \mathrm{~g}$ is neither monotone nor bounded
25. Let f be a continuous function on $\left[0,1\right.$ with $\mathrm{f}(0)=1$. Let $\mathrm{G}(\mathrm{a})=\frac{1}{a} \int_{0}^{a} f(x) d x$
$1 \quad \lim _{a \rightarrow 0} G(a)=\frac{1}{2}$
$2 \quad \lim _{a \rightarrow 0} G(a)=1$

3
$\lim _{a \rightarrow 0} G(a)=0$
4 The limit lim $G(a)$ dose not exist
26. Let $\alpha_{\mathrm{n}}=\sin \left(\frac{1}{n^{2}}\right), \mathrm{n}=1,2, \ldots$ Then
$1 \sum_{n=1}^{\infty} \alpha_{n}$ converges
2 limsup $\alpha_{n} \neq \liminf _{n \rightarrow \infty} \alpha_{n}$
3. $\quad \lim _{n \rightarrow \infty} \alpha_{n}=1$
$4 \quad \sum_{n=1}^{\infty} \alpha_{n}$ diverges
27. If, for $\mathrm{x} \in \mathbb{R}, \varphi(\mathrm{x})$ denotes the integer closest to x (if there are two such integers take the larger one), then $\int_{10}^{12} \varphi(x) d x$ equals

1	22
2	11
3	20
4	12

28. Let P be a polynomial of degree $\mathrm{k}>0$ with a non-zero constant term. Let $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$
$=\mathrm{P}\left(\frac{x}{n}\right) \forall \mathrm{x} \in(0, \infty)$
$1 \quad \lim _{n \rightarrow \infty} f_{n}(x)=\infty \quad \forall \mathrm{x} \in(0, \infty)$
$2 \quad \exists \mathrm{x} \in(0, \infty)$ such that $\lim _{n \rightarrow \infty} f_{n}(x)>\widehat{\mathrm{P}}(0)$
$3 \quad \lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \forall \mathrm{x} \in(0, \infty)$
$4 \quad \lim _{n \rightarrow \infty} f_{n}(x)=\mathrm{P}(0) \quad \forall x \in(0, \infty)$
29. Let $\mathrm{C}[0,1]$ denote the space of all continuous functions with supremum norm.

30. vector space but not closed in $\mathrm{C}[0,1]$.
31. closed but does not form a vector space.
32. a closed vector/space but not an algebra.
33. a closed algebra.
34. Let u, v, we three points in \mathbb{R}^{3} not lying in any plane containing the origin.

Then
$1 \alpha_{1} \mathrm{u}+\alpha_{2} \mathrm{v}+\alpha_{3} \mathrm{w}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0$
$2 \quad u, v, w$ are mutually orthogonal
3 one of u, v, whas to be zero
4 u, v, w cannot be pairwise orthogonal
31. Let x , y be linearly independent vectors in \mathbb{R}^{2} suppose $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $\mathrm{Ty}=\alpha \mathrm{x}$ and $\mathrm{Tx}=0$ Then with respect to some basis in $\mathbb{R}^{2}, \mathrm{~T}$ is of the form
$1 \quad\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), \mathrm{a}>0$
$2 \quad\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \quad \mathrm{a}, \mathrm{b}>0 ; \mathrm{a} \neq \mathrm{b}$
$3 \quad\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
$4 \quad\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
32. Suppose A is an nx n real symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ then

1

$$
\prod_{i=1}^{n} \lambda_{i}<\operatorname{det}(A)
$$

2

$$
\prod_{i=1}^{n} \lambda_{i}>\operatorname{det}(A)
$$

3

$$
\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(A)
$$

4 if $\operatorname{det}(A)=1$ then $\lambda_{j}=1$ for $\mathrm{j}=1, \ldots \mathrm{n}$.
33. Let f be analytic on $D=\{z \in \mathbb{C}:|z|<1\}$ and $f(0)=0$.

Define

$$
g(z)=\left\{\begin{array}{l}
\frac{f(z)}{z} ; z \neq 0 \\
f^{\prime}(0) ; z=0
\end{array}\right.
$$

Then
1 $\quad \mathrm{g}$ is discontinuous at $\mathrm{z}=0$ for all f
2 g is continuous, but not analytic at $\mathrm{z}=0$ for all f
3 g is analytic at $\mathrm{z}=0$ for all f
$4 \quad g$ is analytic at $z=0$ only if $f^{\prime}(0)=0$
34. Let $\Omega \subseteq \mathbb{C}$ be a domain and let $\mathrm{f}(\mathrm{z})$ be an analytic function on Ω such that $|f(z)|=|\sin z|$ for all $z \in \Omega$ then
$1 \quad f(z)=\overline{\sin z}$ for all $z \in \Omega$
$2 \quad \mathrm{f}(\mathrm{z})=\sin (\bar{z}) \quad$ for all $\mathrm{z} \in \Omega$.
3 there is a constant $\mathrm{c} \in \mathbb{C}$ with $|\mathrm{c}|=1$ such that $\mathrm{f}(\mathrm{z})=\mathrm{c} \sin \mathrm{z}$ for all $\mathrm{z} \in \Omega$
$4 \quad$ such a function $\mathrm{f}(\mathrm{z})$ does not exist
35. The radius of convergence of the power series

$$
\sum_{n=0}^{\infty}\left(4 n^{4}-n^{3}+3\right) \mathrm{z}^{\mathrm{n}} \text { is }
$$

10
21
35
4∞
36. Let \mathbb{F} be a finite field such that for every $a \notin \mathbb{F}$ the equation $x^{2}=a$ has a solution in \mathbb{F}. Then

1 the characteristic of \mathbb{F} must be 2
$2 \quad \mathbb{F}$ must have a square number of elements

3 the order of \mathbb{F} is a power of 3
$4 \quad \mathbb{F}$ must be a field with prime number of elements Ny
37. Let \mathbb{F} be a field with 5^{12} elements. What is the total number of proper subfields

38. Let K be an extension of the field Q of rational numbers

1 If K is a finite extension then it is an algebraic extension
2 If K is an algebraic extension then it must be a finite extension
3 If K is an algebraic extension then it must be an infinite extension
4 If K is a finite extension then it need not be an algebraic extension
39. Consider the group S_{9} of all the permutations on a set with 9 elements. What is the largest order of a permutation in S_{9} ?

121
20
330
414
40. Suppose V is a real vector space of dimension 3. Then the number of pairs of linearly independent vectors in V is

1 one
2 infinity
$3 e^{3}$
43
41. Consider the differential equation
$\frac{d y}{d x}=y^{2},(x, y) \in \mathbb{R} \times \mathbb{R}$
Then,

1. all solutions of the differential equation are defined on $(-\infty, \infty)$.
2. no solution of the differential equation is defined on $(-\infty, \infty)$.
3. the solution of the differential equation satisfying the initial condition $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}, y_{0}>0$, is defined on $\left(-\infty, x_{0}+\frac{1}{y_{0}}\right)$.
4. the solution of the differential equation satisfying the initial condition

5. The second order partial differential equation
$(1-\sqrt{x y}) \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+(1+\sqrt{x y}) \frac{\partial^{2} u}{\partial y^{2}}=0$ is
6. hyperbolic in the second and the fourth quadrants
7. elliptic in the first and the third quadrants
8. hyperbolic in the second and elliptic in the fourth quadrant
9. hyperbolic in the first and the third quadrants
10. A general solution of the equation $\frac{\boldsymbol{\Pi} u(x, y)}{\boldsymbol{\top} x}+u(x, y)=e^{-x}$ is
11. $u(x, y)=e^{-x} \mathrm{f}(y)$
12. $u(x, y)=e^{-x} \mathrm{f}(y)+x e^{x}$
13. $u(x, y)=e^{+x} \mathrm{f}(y)+x e^{+x}$
14. $u(x, y)=e^{-x} f(y)+x e^{-x}$
15. Consider the application of Trapezoidal and Simpson's rules to the following integral
$\int_{0}^{4}\left(2 x^{3}-3 x^{2}+5 x+1\right) d x$
16. Both Trapezoidal and Simpson's rules will give results with same accuracy.
17. The Simpson's rule will give more accuracy than the Trapezoidal rule but less accurate than the exact result.
18. The Simpson's rule will give the exact resuft.
19. Both Trapezoidal rule and Simpson's rule will give the exact results.
20. The integral equation

$$
g(x) y(x)=f(x)+\lambda \int_{\alpha}^{\beta} k(x, t) y(t) d t
$$

with $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{k}(\mathrm{x}, \mathrm{t})$ as known functions, α and β as known constants, and λ as a known parameter, is a

1. linear integral equation of Volterra type
2. linear integral equation of Fredholm type
3. nonlinear integral equation of Volterra type
4. nonlinear integral equation of Fredholm type
5. Let $y(x)=f(x)+\lambda \int_{a}^{b} k(x, t) y(t) d t$, where $f(x)$ and $k(x, t)$ are known functions, a and b are known constants and λ is a known parameter. If λ_{i} be the eigenvalues of the corresponding homogeneous equation, then the above integral equation has in general,
6. many solutions for $\lambda \neq \lambda_{i}$
7. no solution for $\lambda \neq \lambda_{i}$
8. a unique solution for $\lambda=\lambda_{i}$
9. either many solutions or no solution at all for $\lambda=\lambda_{i}$, depending on the form of $f(x)$
10. The equation of motion of a particle in the $\mathrm{x}-\mathrm{z}$ plane is given by

$$
\frac{d \vec{v}}{d t}=-\vec{v}-\hat{k}
$$

with $\vec{v}=\alpha \hat{k}$, where $\alpha=\alpha(\mathrm{t})$ and \hat{k} is the unit vector along the z -direction. If initially (i.e., $t=0$) $\alpha=1$, then the magnitude of velocity at $t=1$ is

1. $2 / \mathrm{e}$
2. $(2+\mathrm{e}) / 3$
3. $(\mathrm{e}-2) / \mathrm{e}$
4. 1
5. Consider the functional
$F(u, v)=\int_{0}^{\pi / 2}\left[\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}+2 u(x) v(x)\right] d x$
with
$u(0)=1, v(0)=-1$ and
$u\left(\frac{\pi}{2}\right)=0, v\left(\frac{\pi}{2}\right)=0$.
Then, the extremals satisfy
6. $u(\pi)=1, v(\pi)=-1$
7. $u(\pi)+v(\pi)=0, u(\pi)-v(\pi)=2$
8. $u(p)=-1, v(p)=1$
9. $u(\pi)+v(\pi)=-2, u(\pi)-v(\pi)=0$
10. The pairs of observations on twor random variables X and Y are
$X: 25$
$\begin{array}{llll}7 & 11 & 13 & 19\end{array}$
$Y: \begin{array}{lllllll}0 & 15 & 25 & 45 & 55 & 85\end{array}$
Then the correlation coefficient between X and Y is
10
$2 \quad 1 / 5$
$3 \quad 1 / 2$
4
11. Let X_{1}, X_{2}, X_{3} be independent random variables with $P\left(X_{i}=+1\right)=P\left(X_{i}=-1\right)$
$=1 / 2$. Let $Y_{1}=X_{2} X_{3}, Y_{2}=X_{1} X_{3}$ and $Y_{3}=X_{1} X_{2}$.
Then which of the following is NOT true?
12. Y_{i} and X_{i} have same distribution for $\mathrm{i}=1,2,3$
13. $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}\right)$ are mutually independent
14. X_{1} and $\left(Y_{2}, Y_{3}\right)$ are independent
15. $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ have the same distribution
16. Let X be an exponential random variable with parameter λ. Let $Y=[X]$ where $[\mathrm{x}]$ denotes the largest integer smaller than x . Then
17. $\quad \mathrm{Y}$ has a Geometric distribution with parameter λ.
18. $\quad \mathrm{Y}$ has a Geometric distribution with parameter $1-e^{-l}$.
19. Y has a Poisson distribution with parameter λ
20. Y has mean [1/ $\lambda]$
21. Consider a finite state space Markov chain with transition probability matrix $\mathrm{P}=\left(\left(\mathrm{p}_{\mathrm{ij}}\right)\right)$. Suppose $\mathrm{p}_{\mathrm{ii}}=0$ for all states i . Then the Markov chain is
22. always irreducible with period 1.
23. may be reducible and may have period $\gtrsim 1$.
24. may be reducible but period is always 1 .
25. always irreducible but may have period >1.
26. Let $X_{1}, X_{2}, \ldots . X_{n}$ be i.i.d. Normal random variables with mean 1 and variance 1. and let $Z_{n}=\left(X_{1}^{2}+X_{2}+\ldots+X_{n}\right) / n$ Then
27. $\quad \mathrm{Z}_{\mathrm{n}}$ converges in probability to 1
28. $\quad Z_{\mathrm{n}}$ converges in probability to 2
29. Z_{n} converges in distribution to standard normal distribution
30. $\quad Z_{n}$ converges in probability to Chi-square distribution.
31. Let $X_{1}, X_{2}, \ldots X_{\mathrm{n}}$ be a random sample of size $\mathrm{n}(\geq 4)$ from uniform $(0, \theta)$ distribution. Which of the following is NOT an ancillary statistic?
32.

2. $\frac{X_{n}}{X_{1}}$
3. $\frac{X_{4}-X_{1}}{X_{3}-X_{2}}$
4. $X_{(n)}-X_{(1)}$
55. Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ are i.i.d, Uniform $(0, q), \theta \in\{1,2 \ldots\}$.

Then the MLE of θ is

1. $\mathrm{X}_{(\mathrm{n})}$
2. \bar{X}
3. $\left[X_{(n)}\right]$ where $[a]$ is the integer part of a.
4. $\left[X_{(n)}+1\right]$ where $[a]$ is the integer part of a.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables with common continuous distribution function $\mathrm{F}(\mathrm{X})$. Let $\mathrm{R}_{\mathrm{i}}=$ $\operatorname{Rank}\left(X_{i}\right), i=1,2, \ldots, n$. Then $P\left(\left|R_{n}-R_{1}\right|^{3} n-1\right)$ is
6. 0
7. $\frac{1}{n(n-1)}$
8. $\frac{2}{n(n-1)}$
9. $\frac{1}{n}$
10. A simple random sample of size in is drawn without replacement from a population of size $\mathrm{N} />\mathrm{m})$. If $\pi_{i}(\mathrm{i}=1,2, \ldots \mathrm{~N})$ and $p_{i j}(\mathrm{i} \neq \mathrm{j} . \mathrm{i}, \mathrm{j}=1,2, \ldots \mathrm{~N})$ denote respectively, the first and second order inclusion probabilities, then which of the following statements is NOT true?

1

2

$$
\stackrel{N}{a_{n i}}{\underset{p}{i j}}=(n-1) p_{i}
$$

3

$$
p_{i}, p_{j} £ p_{i j} \text { for each pair }(\mathrm{i}, \mathrm{j})
$$

$4 \quad p_{i, j}<p_{i}$ for each pair (i, j$)$.
58. Consider a balanced incomplete block design with usual parameters v, b, r, k $(\geq 2), \lambda$. Let t_{i} be the effect of the $\mathrm{i}^{\text {th }}$ treatment $(\mathrm{i}=1,2, \ldots, v)$ and σ^{2} denote the variance of an observation. Then the variance of the best linear
unbiased estimator of $\sum_{i=1}^{v} p_{i} t_{i}$ where $\sum_{i=1}^{v} p_{i}=0$ and $\sum_{i=1}^{v} p_{i}{ }^{2}=1$, under the intra-block model, is
$1 \quad(\lambda v / k) \sigma^{2}$
$2 \quad 2 \sigma^{2} / r$
$3(k / \lambda v) \sigma^{2}$
$4 \quad(2 k / \lambda v) \sigma^{2}$
59. An aircraft has four engines - two on the left side and two on the right side.

The aircraft functions only if at least one engine on each side functions.
If the failures of engines are independent, and the probability of any engine failing in equal to p , then the reliability of the aircraft is equal to

1. $p^{2}\left(1-p^{2}\right)$
2. ${ }^{4} C_{2} p^{2}(1-p)^{2}$
3. $\left(1-p^{2}\right)^{2}$
4. $1-\left(1-p^{2}\right)^{2}$
5. A company maintains EOQ model for one of its critical components. The setup cost is k, unit production cost is c, demand is a units per unit time, and h is the cost of holding one unit per unit time. In view of the criticality of the component the company maintains a safety stock of s units at all times. The economic order quantity for this problem is given by.
6. $\sqrt{\frac{2 a k}{h}+s}$
7. $s+\sqrt{\frac{2 a k}{h}}$
8. $\sqrt{\frac{2 a k}{h}}$
9. $\sqrt{\frac{2 a k+s}{h}}$

PART C

61. Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are convergent sequences of real numbers such that $a_{n}>0$ and $b_{n}>0$ for all n.
Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$. Let $\mathrm{c}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}$. Then
62. $\left\{c_{n}\right\}$ converges if $b>0$
63. $\left\{c_{n}\right\}$ converges only if $a=0$
64. $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ converges only if $\mathrm{b}>0$
65. $\quad \lim \sup \mathrm{c}_{\mathrm{n}}=\infty$ if $\mathrm{b}=0$.
$n \rightarrow \infty$
66. Consider the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$
where $\mathrm{a}_{0}=0$ and $\mathrm{a}_{\mathrm{n}}=\sin (\mathrm{n}!) / \mathrm{n}$! for $\mathrm{n} \geq 1$. Let R be the radius of convergence of the power series. Then
67. $\mathrm{R} \geq 1$
68. $\quad \mathrm{R} \geq 2 \pi$
69. $\mathrm{R} \leq 4 \pi$
70. $\mathrm{R} \geq \pi$.
71. Suppose f is an increasing real-valued function on $[0, \infty)$ with $\mathrm{f}(\mathrm{x})>0 \forall \mathrm{x}$ and let
$g(x)=\frac{1}{x} \int_{0}^{x} f(u) d u ; \quad 0<x<\infty$.
Then which of the following are true:
72. $g(x) \leq f(x)$ for all $x \in(0, \infty)$
73. $\mathrm{xg}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \in(0, \infty)$
74. $\quad \mathrm{gg}(\mathrm{x}) \geq \mathrm{f}(0)$ for all $\mathrm{x} \in(0, \infty)$
75. $\quad \operatorname{yg}(y)-x g(x) \leq(y-x) f(y)$ for all $x<y$.
76. Let $\mathrm{f}:[0,1] \leftrightarrow \mathbb{R}$ be defined by
$f(x)= \begin{cases}x \cos (\pi \wedge(2 x)) & \text { if } x \neq 0, \\ 0 y & \text { if } x=0 .\end{cases}$
Then
77. f is continuous on $[0,1]$
78. f is of bounded variation on $[0,1]$
79. f is differentiable on the open interval $(0,1)$ and its derivative f^{\prime} is bounded on (0,1)
80. f is Riemann integrable on $[0,1]$.
81. For any positive integer n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\frac{x}{n x+1} \text { for } x \in[0,1] .
$$

Then

1. the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly on $[0,1]$
2. the sequence $\left\{f_{n}^{\prime}\right\}$ of derivatives of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly on [0, 1]
3. the sequence $\left\{\int_{0}^{1} f_{n}(x) d x\right\}$ is convergent
4. the sequence $\left\{\int_{0}^{1} f_{n}^{\prime}(x) d x\right\}$ is convergent.
5. Let $\mathrm{f}:[0, \infty) \rightarrow \mathbb{R}$ and $\mathrm{g}:[0, \infty) \rightarrow \mathbb{R}$ be continuous functions
satisfying $\int_{0}^{f(x)} t^{2} d t=x^{3}(1+x)^{2}$ and $\int_{0}^{x^{2}(1+x)} g(t) d t=x$ for all $\mathrm{x} \in[0,(\infty)$.

Then $f(2)+g(2)$ is equal to

1. 0
2. 5
3. 6
4. 11 .
5. Consider $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $\mathrm{f}(0,0)=0$ and
$f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ for $\left.(x, y) \neq(0,0).\right)$
Then which of the following stafements is correct?
6. Both the partial deriyatives of f at $(0,0)$ exist
7. The directional derrivative $D_{\underline{u}} f(0,0)$ of f at $(0,0)$ exists for every unit vector \underline{u}
8. f is contimuous at $(0,0)$
9. f is differentiable at $(0,0)$.
10. Let $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=|x|+|y| \text { and } g(x, y)=|x y|
$$

Then
4. f is differentiable at $(0,0)$, but g is not differentiable at $(0,0)$
2. g is differentiable at $(0,0)$, but f is not differentiable at $(0,0)$
3. Both f and g are differentiable at $(0,0)$
4. Both f and g are continuous at $(0,0)$.
69. Decide for which of the functions $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given below, there exists a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $(\nabla f)(x)=F(x)$.

1. $\left(4 x y z-z^{2}-3 y^{2}, 2 x^{2} z-6 x y+1,2 x^{2} y-2 x z-2\right)$
2. (x, xy, xyz)
3. $(1,1,1)$
4. (xyz, yz, z).
5. Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be the function defined by the rule $\mathrm{f}(\mathrm{x})=\quad \mathrm{x} \cdot \mathrm{b}$, where $\mathrm{b} \in \mathbb{R}^{\mathrm{n}}$ and x.b denotes the usual inner product. Then
6. $\left[f^{\prime}(\mathrm{x})\right](\mathrm{b})=\mathrm{b} \cdot \mathrm{b}$
7. $\left[f^{\prime}(\mathrm{x})\right](\mathrm{x})=\frac{x \cdot x}{2}, \mathrm{x} \in \mathbb{R}^{\mathrm{n}}$
8. $\quad\left[f^{\prime}(0)\right]\left(\mathrm{e}_{1}\right)=$ b.e. e_{1}, where $\mathrm{e}_{1}=(1,0, \cdots, 0) \in \mathbb{R}^{\mathrm{n}}$.
9. $\quad\left[f^{\prime}\left(\mathrm{e}_{1}\right)\right]\left(\mathrm{e}_{\mathrm{j}}\right)=0, \mathrm{j} \neq 1$, where $\mathrm{e}_{\mathrm{j}}=(0, \cdots, 1, \cdots 0)$ with 1 in the $\mathrm{j}^{\text {th }}$ slot.
10. Consider the subsets A and B of \mathbb{R}^{2} defined by
$A=\left\{\left(x, x \sin \frac{1}{x}\right): x \in(0,1]\right\}$ and $B=A \cup\{(0,0)\}$.
Then
11. A is compact
12. A is connected
13. B is compact
14. B is connected.
15. Lef $\mathrm{f}=\mathbb{R} \rightarrow \mathbb{R}$ be a continuous f unction. Which of the following is always true?
16. $f^{-1}(\mathrm{U})$ is open for all open sets $\mathrm{U} \subseteq \mathbb{R}$
17. $\quad f^{-1}(\mathrm{C})$ is closed for all closed sets $\mathrm{C} \subseteq \mathbb{R}$
18. $\mathrm{f}^{-1}(\mathrm{~K})$ is compact for all compact sets $K \subseteq \mathbb{R}$
19. $\mathrm{f}^{-1}(\mathrm{G})$ is connected for all connected sets $\mathrm{G} \subseteq \mathbb{R}$.
20. Let A be an $n \times n$ matrix, $n \geq 2$, with characteristic polynomial $x^{n-2}\left(x^{2}-1\right)$.

Then

1. $\Delta A^{n}=A^{n-2}$
2. Rank of A is 2
3. Rank of A is at least 2
4. There exist nonzero vectors x and y such that $A(x+y)=x-y$.
5. Let A, B and C be real $n \times n$ matrices such that $A B+B^{2}=C$. Suppose C is nonsingular. Which of the following is always true?
6. A is nonsingular
7. $\quad \mathrm{B}$ is nonsingular
8. A and B are both nonsingular
9. $\quad \mathrm{A}+\mathrm{B}$ is nonsingular.
10. Let V be a real vector space and let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ be a basis for V . Then
11. $\left\{\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ is a basis for V
12. The dimension of V is 3
13. x_{1}, x_{2}, x_{3} are pairwise orthogonal
14. $\left\{x_{1}-x_{2}, x_{2}-x_{3}, x_{1}-x_{3}\right\}$ is a basis for V.
15. Consider the system of m linear equations in n unknowns given by $A x=b$, where $A=\left(a_{i j}\right)$ is a real $m \times n$ matrix, x and b are $n \times 1$ column vectors. Then
16. There is at least one solution
17. There is at least one solution if b is the zero vector
18. If $\mathrm{m}=\mathrm{n}$ and if the rank of A is n , then there is a unique solution
19. If $m<n$ and if the rank of the augmented matrix $\{\mathrm{A}: \mathrm{b}]$ equals the rank of A, then there are infinitely many solutions.
20. Let V be the set of all real $\mathrm{n} \times \mathrm{n}$ matrices $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ with the property that $\mathrm{a}_{\mathrm{ij}}=$ $-a_{j i}$ for all $i, j=1,2, \cdots, n$. Then
21. $\quad \mathrm{V}$ is a vector space of dimension $\mathrm{n}^{2}-\mathrm{n}$
22. For every A in V , $\mathrm{a}_{\mathrm{ii}}=0$ for all $\mathrm{i}=1,2, \cdots, \mathrm{n}$
23. V consists of only diagonal matrices
24. $\quad \mathrm{V}$ is a vector space of dimension $\frac{n^{2}-n}{2}$.
25. Let W be the set of all 3×3 real matrices $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ with the property that $\mathrm{a}_{\mathrm{ij}}=$ 0 if $\mathrm{i}>\mathrm{j}$ and $\mathrm{a}_{\mathrm{ii}}=1$ for alli. Let $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ be a 3×3 real matrix that satisfies $\mathrm{AB}=\mathrm{BA}$ for all A in W . Then
26. Every A in Whas an inverse which is in W.
27. $\mathrm{b}_{12}=0$
28. $\mathrm{b}_{13}=0$
29. $\mathrm{b}_{23}=0$.
30. Let $\mathrm{f}(\mathrm{z})$ be an entire function with $\operatorname{Re}(\mathrm{f}(\mathrm{z})) \geq 0$ for all $\mathrm{z} \in \mathbb{C}$. Then
31. $\quad \operatorname{Im}(f(z)) \geq 0$ for all $z \in \mathbb{C}$
32. $\operatorname{lm}(\mathrm{f}(\mathrm{z}))=\mathrm{a}$ constant
33. fis a constant function
34. $\operatorname{Re}(f(z))=|z|$ for all $z \in \mathbb{C}$.
35. Let f be an analytic function defined on $D=\{z| | z \mid<1\}$ such that $|f(z)| \leq 1$ for all $\mathrm{z} \in \mathrm{D}$. Then
36. there exists $\mathrm{z}_{0} \in \mathrm{D}$ such that $\mathrm{f}\left(\mathrm{z}_{0}\right)=1$
37. the image of f is an open set
38. $f(0)=0$
39. f is necessarily a constant function.
40. Let $f(z)=\frac{\sin z}{z^{2}}-\frac{\cos z}{z}$. Then
41. f has a pole of order 2 at $\mathrm{z}=0$
42. f has a simple pole at $\mathrm{z}=0$
43. $\oint_{|z|=1} f(z) d z=0$, where the integral is taken anti-clockwise
44. the residue of f at $\mathrm{z}=0$ is $-2 \pi \mathrm{i}$.
45. Let f be an analytic function defined on $D=\{z \in \mathbb{C}:|z|<1\}$. Then $g: D \rightarrow \mathbb{C}$ is analytic if
46. $\mathrm{g}(\mathrm{z})=f(\bar{z})$ for all $\mathrm{z} \in \mathrm{D}$
47. $\mathrm{g}(\mathrm{z})=\overline{f(z)}$ for all $\mathrm{z} \in \mathrm{D}$
48. $\mathrm{g}(\mathrm{z})=f(\bar{z})$ for all $\mathrm{z} \in \mathrm{D}$
49. $\mathrm{g}(\mathrm{z})=\bar{i} f(z)$ for all $\mathrm{z} \in \mathrm{D}$.
50. Which of the following statements involving Euler's function ϕ is/are true?
51. $\quad \phi(\mathrm{n})$ is even as many times as itis odd
52. $\phi(\mathrm{n})$ is odd for only two values of n
53. $\phi(\mathrm{n})$ is even when $\mathrm{n}>2$
54. $\quad \phi(n)$ is odd when $n=2$ or n is odd.
55. Let p be a prime number and $d \nmid(p-1)$. Then which of the following statements about the congruence $\mathrm{x}^{\mathrm{d}} \equiv 1(\bmod \mathrm{p})$ is/are true?
56. It does not have any solution
57. It has atmost d incongruent solutions
58. It has exactly dincongruent solutions
59. It has at least d incongruent solutions.
60. Let K be a field, L a finite extension of K and M a finite extension of L .

Then

1. $[\mathrm{M}: \mathrm{K}]=[\mathrm{M}: \mathrm{L}]+[\mathrm{L}: \mathrm{K}]$
2. $[\mathrm{M}: \mathrm{K}]=[\mathrm{M}: \mathrm{L}][\mathrm{L}: \mathrm{K}]$
3. $[\mathrm{M}: \mathrm{L}]$ divides $[\mathrm{M}: \mathrm{K}]$
4. $[\mathrm{L}: \mathrm{K}]$ divides $[\mathrm{M}: \mathrm{K}]$.
5. Let R be a commutative ring and $R[x]$ be the polynomial ring in one variable over R.
6. If R is a U.F.D., then $\mathrm{R}[\mathrm{x}]$ is a U.F.D.
7. If R is a P.I.D., then $R[x]$ is a P.I.D.
8. If R is an Euclidean domain, then $R[x]$ is an Euclidean domain
9. If R is a field, the $\mathrm{R}[\mathrm{x}]$ is an Euclidean domain.
10. Let G be a group of order 56. Then
11. All 7 -sylow subgroups of G are normal
12. All 2-Sylow Subgroups of G are normal
13. Either a 7-Sylow subgroup or a 2-Sylow subgroup of G is normal
14. There is a proper normal subgroup of G .
15. Which of the following statements is/are true?
16. 50 ! ends with an even number of zeros
17. 50 ! ends with a prime number of zeros
18. 50 ! ends with 10 zeros
19. 50 ! ends with 12 zeros.
20. Let $\mathrm{X}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2} \mid \mathrm{x}^{2}+\mathrm{y}^{2}=1\right\}$
$Y=\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y|=1\}\right.$, and
$\mathrm{Z}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2} \mid \mathrm{x}^{2}-\mathrm{y}^{2}=1\right\}$.
Then
21. X is not homeomorphic to Y
22. Y is not homeomorphic to Z
23. X is not homeomorphic to Z
24. No two of X, Y or Z are homeomorphic.
25. Let τ_{1}, τ_{2} and τ_{3} be topologies on a set X such that $\tau_{1} \subset \tau_{2} \subset \tau_{3}$ and $\left(X, \tau_{2}\right)$ is a compact Hausdorff space. Then
26. $\tau_{1}=\tau_{2}$ if $\left(\mathrm{X}, \tau_{1}\right)$ is a Hausdorff space
27. $\tau_{1}=\tau_{2}$ if $\left(X, \tau_{1}\right)$ is a compact space
28. $\tau_{2}=\tau_{3}$ if $\left(\mathrm{X}, \tau_{3}\right)$ is a Hausdorff space
29. $\tau_{2}=\tau_{3}$ if $\left(X, \tau_{3}\right)$ is a compact space.
30. The initial value problem $\dot{x}(t)=3 x^{2 / 3}, x(0)=0$;
in an interval around $t=0$, has
31. no solution
32. a unique solution
33. finitely many linearly independent solutions
34. infinitely many linearly independent solutions.
35. For the system of ordinary differential equations:
$\frac{d}{d t}\binom{x_{1}(t)}{x_{2}(t)}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$,
36. every solution is bounded
37. every solution is periodic
38. there exists a bounded solution
39. there exists a non periodic solution.
40. The kernel $p(x, y)=\frac{y}{y^{2}+x^{2}}$ is a solution of
41. the heat equation
42. the wave equation
43. the Laplace equation
44. the Lagrange equation.
45. The solution of the Laplace equation on the upper half plane, which takes the value $\varphi(x)=e^{x}$ on the real line is \bigcap
46. the real part of an analytic function
47. the imaginary part of an analytic function
48. the absolute value of an analytic function
49. an infinitely differentiable function.
50. Which of the following polynomials interpolate the data
51. $3+26(x-1)-\frac{53}{5}(x-)(x-)$

52. $3(x-1)\left(x-\frac{1}{2}\right) 1-10\left(x-\frac{1}{2}\right)(x-3)+10(x-3)(x-1)$
53. $3\left(\mathrm{x}-\frac{1}{2}\right)(\mathrm{x}-3)-8(\mathrm{x}-1)(\mathrm{x}-3)+\frac{2}{5}(\mathrm{x}-1)\left(\mathrm{x}-\frac{1}{2}\right)$
54. $(\mathrm{x}-3)(\mathrm{x}+10)+\frac{1}{2}(\mathrm{x}+10)(\mathrm{x}-2)+3(\mathrm{x}-2)(\mathrm{x}-3)$.
55. The evaluation of the quantity $\sqrt{x+1}-1$ near $\mathrm{x}=0$ is achieved with minimum loss of significant digits if we use the expression
56. $\sqrt{x+1}-1$
57. $\frac{x}{\sqrt{x+1}+1}$
58. $\left(1-\frac{1}{\sqrt{x+1}}\right) \sqrt{x+1}$
59. $\frac{x+2 \sqrt{x+1}}{\sqrt{x+1}-1}$.
60. If $\mathrm{x}(\mathrm{t})$ is an extremal of the functional $\int_{a}^{b}\left(\frac{1}{2} m(\dot{x})^{2}-\left(x^{2}\right) d t\right.$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are arbitrary constants and $x=\mathrm{dx} / \mathrm{dt}$, then the function $\mathrm{x}(\mathrm{t})$ satisfies
61. $m \ddot{x}+2 c x=0$
62. $m \ddot{x}-2 c x=0$
63. $m(x)^{2}+2 c x^{2}=k_{1}$ with k_{1} as an arbitrary constant
64. $\quad x(t)=k_{1} \sin \left(\sqrt{\frac{2 c}{m}}+t k_{2}\right) /$ with k_{1} and k_{2} as arbitrary constants.
65. If $u(x)$ and $v(x)$ satisfying $u(0)=1, v(0)=-1, u(\pi / 2)=0$ and $v((\pi / 2)=0$ are the extremals of the functional $\int_{0}^{\frac{\pi}{2}}\left\{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}+2 u v\right\} d x$, then
66.

$$
u\left(\frac{\pi}{4}\right)+v\left(\frac{\pi}{4}\right)=0
$$

2.

$$
u\left(\frac{\pi}{3}\right)-v\left(\frac{\pi}{3}\right)=0
$$

3. $u\left(\frac{\pi}{4}\right)-v\left(\frac{\pi}{4}\right)=1$
4. $u\left(\frac{\pi}{3}\right)+v\left(\frac{\pi}{3}\right)=0$.
5. Consider the integral equation $y(x)=x^{2}+\lambda \int_{o}^{1} x t y(t) d t$,
where λ is a real parameter. Then the Neumann series for the integral equation converges for all values of λ
6. except for $\lambda=3$
7. lying in the interval $-3<\lambda<0$
8. lying in the interval $-3<\lambda<3$
9. lying in the interval $0<\lambda<3$.
10. The solution of the integral equation $\phi(x)=\frac{5 x}{6}+\frac{1}{2} \int_{0}^{1} x t \phi(t) d t$ satisfies
11. $\phi(0)+\phi(1)=1$
12. $\phi\left(\frac{1}{2}\right)+\phi\left(\frac{1}{3}\right)=1$
13. $\phi\left(\frac{1}{4}\right)+\phi\left(\frac{1}{2}\right)=1$
14. $\phi\left(\frac{3}{4}\right)+\phi\left(\frac{1}{4}\right)=1$.
15. A particle of unit mass is constrained to move on the plane curve $x y=1$ under gravity g. Then
16. the kinetic energy of the system is $\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)$
17. the potential energy of the system is $\frac{g}{x}$
18. the Lagrangian of the particle is $\frac{1}{2} \dot{x}^{2}\left(1+x^{-4}\right)-\left(\frac{g}{x}\right)$
19. the Lagrangian of the particle is $\frac{1}{2} \dot{x}^{2}\left(1+x^{-4}\right)+\left(\frac{g}{x}\right)$.
20. Suppose a mechanical system has the single coordinate q and Lagrangian $L=\frac{1}{4} \dot{q}^{2}-\frac{q^{2}}{9}$. Then
21. the Hamiltonian is $\mathrm{p}^{2}+\left(\frac{q^{2}}{9}\right)$
22. Hamilton's equations are $\dot{q}=2 p, \dot{p}=-(2 / 9) q$
23. q satisfies $\ddot{q}+(4 / 9) q=0$
24. the path in the Hamiltonian phase-space, i.e. $q-p$ plane is an ellipse.
25. Let $X_{1}, \ldots \ldots, X_{n}$ be i.i.d. observations from a distribution with variance $\sigma^{2}(<\infty)$. Which of the following is/are unbiased estimator(s) of $\sigma^{2} ?$
26. $\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
27. $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
28. $\binom{n}{2}^{-1} \frac{1}{2} \sum_{i \leq 1<j \leq n}^{n}\left(X_{i}-X_{j}\right)^{2}$
29. $\frac{1}{n} \sum_{i=1}^{n} X_{i}{ }^{2}-n \bar{X}^{2}$.
30. Let $X_{1}, X_{2}, \ldots \ldots \ldots$. be i.i.d. $\mathrm{N}(0,1)$ and $\operatorname{let} \mathrm{S}_{n}=\sum_{i=1}^{n} X_{i}$ be the partial sums. Which of the following is/are true?
31. $\quad \frac{S_{n}}{n} \rightarrow 0$ almost surely
32. $E\left(\frac{S_{n}}{n}\right) \xrightarrow{\longrightarrow} 0$
33. $\quad \operatorname{Var}\left(\frac{S_{n}}{n}\right) \rightarrow 0$
34. $\operatorname{Var}\left(\frac{S_{n}^{2}}{n^{2}}\right) \rightarrow 0$
35. Let (X, Y) be a pair of independent random variables with X having exponential distribution with mean 1 and Y having uniform distribution on $\{1,2, \ldots, \mathrm{~m}\}$. Define $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$. Then
36. $\mathrm{E}(\mathrm{Z} \mid \mathrm{X})=\mathrm{X}+\frac{m+1}{2}$
37. $\mathrm{E}(\mathrm{Z} \mid \mathrm{Y})=1+\frac{m+1}{2}$
38. $\operatorname{Var}(\mathrm{Z} \mid \mathrm{X})=\frac{m^{2}-1}{2}$
39. $\quad \operatorname{Var}(\mathrm{Z} \mid \mathrm{Y})=2$.
40. A simple symmetric random walk on the integer line is a Markov chain which is
41. recurrent
42. null recurrent
43. irreducible
44. positive recurrent.
45. Suppose X and Y are random variables with $E(X)=E(Y)=0, V(X)=V(Y)=1$ and $\operatorname{Cov}(X, Y)=0.25$. Then which of the following is/are always true?
46. $P\{|\mathrm{X}+2 \mathrm{Y}| \geq 4\} \leq \frac{4}{16}$
47. $P\{|X+2 Y| \geq 4\} \leq \frac{5}{16}$
48. $P\{|X+2 Y| \geq 4\} \leq \frac{6}{16}$
49. $\quad \mathrm{P}\left\{|\mathrm{X}+2 \mathrm{Y}| \geq(4\}-\frac{7}{16}\right.$.
50. Let $\mathrm{X}_{1}, \ldots \ldots$, X_{n} be a random sample from uniform $(\theta, \theta+1)$ distribution.

Which of the following is/are maximum likelihood estimator(s) of θ ?
1.

2.
3. $X_{(i))^{-1}}$
4. $\frac{X_{(n)}+X_{(1)}}{2}-0.5$.
109. Let $\underline{X}=\left(\mathrm{X}_{1}, \ldots \ldots, \mathrm{X}_{\mathrm{n}}\right)$ be a random sample from uniform
$(0, \theta)$. Which of the following is/are uniformly most powerful size $\alpha(0<\alpha<1 / 2)$ test(s) for testing $\mathrm{H}_{0}: \theta=\theta_{\mathrm{o}}$ against $\mathrm{H}_{1}: \theta>\theta_{\mathrm{o}}$?

1. $\phi_{1}(\underline{X})=1$, if $\mathrm{X}_{(\mathrm{n})}>\theta_{0}$ or $\mathrm{X}_{(\mathrm{n})}<\theta_{\mathrm{o}} \alpha^{1 / \mathrm{n}}$
$=0$, otherwise
2. $\quad \phi_{2}(\underline{X})=1$, if $\mathrm{X}_{(\mathrm{n})}>\theta_{0}$

$$
=\alpha, \text { if } \mathrm{X}_{(\mathrm{n})} \leq \theta_{0}
$$

3. $\phi_{3}(\underline{X})=1$, if $\mathrm{X}_{(\mathrm{n})}>\theta_{0} \alpha^{1 / \mathrm{n}}$
$=0$, if $\mathrm{X}_{(\mathrm{n})} \leq \theta_{0} \alpha^{1 / \mathrm{n}}$
4. $\quad \phi_{4}(\underline{X})=1$, if $\mathrm{X}_{(\mathrm{n})}<\theta_{0}(\alpha / 2)^{1 / \mathrm{n}}$ or $\mathrm{X}_{(\mathrm{n})>}>\theta_{0}(-\alpha / 2)^{1 / n}$

$$
=0 \text {, otherwise }
$$

110. Suppose $\underline{X}_{p \times 1}$ has a $\mathrm{N}_{\mathrm{p}}\left(O, I_{p}\right)$ distribution. The distribution of $\underline{X}^{T} A \underline{X}$ is chisquare with r degrees of freedom only if
111. A is idempotent with rank r
112. \quad Trace $(A)=\operatorname{Rank}(A)=r$
113. A is positive definite
114. A is non-negative definite with rank r .
115. Let $X_{1}, X_{2}, \ldots \ldots, X_{m}$ be iid random variables with common continuous cdf $\mathrm{F}(\mathrm{x})$. Also let $\mathrm{Y}_{\mathrm{d}}, \mathrm{Y}_{2}, \ldots ., \mathrm{Y}_{\mathrm{n}}$ be iid random variables with common continuous $\operatorname{cdf} \mathrm{G}(\mathrm{x})$ and X 's \& Y's are independently distributed. For testing $\mathrm{H}_{0}: F(x)=$ $G(x)$ for all x against $H_{1}: F(x) \neq G(x)$ for at least one x, which of the following test is/are used?
116. Wilcoxon signed rank test
117. Kolmogorov-Smirnov test
118. Wald-Wolfowitz run test
119. Sign test.
120. Random variables X and Y are such that $E(X)=E(Y)=0, V(X)=V(Y)=1$, correlation $(\mathrm{X}, \mathrm{Y})=0.5$. Then the
121. conditional distribution Y given $\mathrm{X}=\mathrm{x}$ is normal with mean 0.5 x and variance 0.75
122. least-squares linear regression of Y on X is $y=0.5 x$ and of X on Y is $x=2 y$
123. least-squares linear regression of X on Y is $\mathrm{x}=0.5 \mathrm{y}$ and of Y on X is $\mathrm{y}=2 \mathrm{x}$.
124. least-squares linear regression of Y on X is $y=0.5 x$ and of X on Y is x $=0.5 \mathrm{y}$.
125. X has a binomial $(5, p)$ distribution on which an observation $x=4$ has been made. In a Bayesian approach to the estimation of p, a beta $(2,3)$ prior distribution (with density proportional to $\mathrm{p}(1-\mathrm{p})^{2}$) has been formulated. Then the posterior
126. distribution of p is uniform on (0.1)
127. mean of p is $\frac{6}{10}$
128. distribution of p is beta $(6,4)$
129. distribution of p is binomial $(10,0.5)$.
130. In a study of voter preferences in an election, the following data were obtained
Gender Party voting for

Then the

1. chi-square statistic for testing no association between party and gender is 0 .
2. expected frequency under the hypothesis of no association is 250 in each cell.
3. \log-linear model for cell frequency $\mathrm{m}_{\mathrm{ij}}, \log \left(\mathrm{m}_{\mathrm{ij}}\right)=$ constant, $\mathrm{i}, \mathrm{j}=1,2$, fits perfectly to the data.
4. chi-square test of no gender-party association with 1 degree of freedom has a p -value of 1 .
5. Let X, Y and N be independent random variables with $P(X=0)=1 / 2=1-P(X=1)$ and $\quad \mathrm{Y}$ following Poisson with parameter $\lambda>0$ and N following normal with mean 0 and variance 1 . Define

$$
Z=\left\{\begin{array}{lll}
Y & \text { if } X=0 \\
N & \text { if } X=1
\end{array}\right.
$$

Then, the characteristic function of Z is given by

1. $\left(\frac{1}{2}+\frac{1}{2} e^{i t}\right) e^{-\lambda\left(1-e^{i t}\right)} e^{-t^{2} / 2}$
2. $e^{-\lambda\left(1-e^{i t}\right)} e^{-t^{2} / 2}$
3. $\frac{e^{-\lambda\left(1-e^{i t}\right)}+e^{-t^{2} / 2}}{2}$
4. $\left(\frac{1}{2}+\frac{1}{2} e^{i t}\right)\left(\frac{e^{-\lambda\left(1-e^{i t}\right)}+e^{-t^{2} / 2}}{2}\right)$.
5. A simple random sample of size n is drawn from a finite population of N units, with replacement. The probability that the $\mathrm{i}^{\text {th }}(1 \leq \mathrm{i} \leq \mathrm{N})$ unit is included in the sample is
6. n / N
7. $1-\left(1-\frac{1}{N}\right)^{n}$
8. $\left(\frac{N-1}{N}\right)^{n}$
9. $\frac{n(n-1)}{N(N-1)}$.
10. Under a balanced incomplete block design with usual parameters $\mathrm{v}, \mathrm{b}, \mathrm{r}, \mathrm{k}, \lambda$, which of the following is/are true?
11. All treatment contrasts are estimable if $\mathrm{k} \geq 2$
12. The variance of the best linear unbiased estimator of any normalized treatment contrast is a constant depending only on the design parameters and the per observation variance
13. The covariance between the best linear unbiased estimators of two mutually orthogonal treatment contrasts is strictly positive
14. The variance of the best linear unbiased estimator of an elementary treatment contrast is strictly smaller than that under a randomized block design with replication r .
15. Consider a randomized (complete) block design with $\mathrm{v}(>2)$ treatments and r (≥ 2) replicates. Which of the following statements is/are true?
16. The design is connected
17. The variance of the best linear unbiased estimator (BLUE) of every normalized treatment contrast is the same
18. The BLUE of any treatment contrast is uncorrelated with the BLUE of any contrast among replicate effects
19. The variance of the BLUE of any elementary treatment contrast is $2 \sigma^{2} / \mathrm{r}$, where σ^{2} is the variance of an observation.
20. The starting and optimal tableaus of a minimization problem
are given below. The variables are x_{1}, x_{2} and x_{3}. The slack variables are S_{1} and S_{2}.

Starting Tableau

	Z	x_{1}	x_{2}	x_{3}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	RHSS
Z	1	a	1	-3	0	0	0
$\mathrm{~S}_{1}$	0	b	2	2	1	0	6
$\mathrm{~S}_{2}$	0	-1	2	-1	0	1	1

Optimal Tableau

	Z	x_{1}	x_{2}	x_{3}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	RHS
Z	1	0	$-1 / 3$	$-11 / 3$	$\mathrm{~S}-2 / 3$	0	-4
X_{1}	0	c	$2 / 3$	$2 / 3$	$1 / 3$	0	e
S_{2}	0	d	$8 / 3$	$-1 / 3$	$1 / 3$	1	3

Which of the following are the correct values of the unknowns a, b, c, d and e

1. $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=1, \mathrm{~d}=0, \mathrm{e}=2$
2. $\mathrm{a}=2, \mathrm{~b}=-3, \mathrm{c}=1, \mathrm{~d}=0, \mathrm{e}=-2$
3. $a=-2, b=3, c=1, d=0, e=2$
4. $a=-2, b=3, c=-1, d=0, e=2$
5. Consider thefollowing linear programming problem.

Minimize $Z=x_{1}+x_{2}$
subject to $\mathrm{sx}_{1}+\mathrm{tx}_{2} \geq 1$

$$
\mathrm{x}_{1} \geq 0
$$

x_{2} unrestricted.
The necessary and sufficient condition to make the LP

1. feasible is $\mathrm{s} \leq 0$ and $\mathrm{t}=0$
2. unbounded is $\mathrm{s}>\mathrm{t}$ or $\mathrm{t}<0$
3. have a unique solution is $s=t$ and $t>0$
4. have a finite optimal solution is $\mathrm{x}_{2} \geq 0$.
