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1. If A and B are subsets of a universal set X such that n(A) = 115, n(B) = 326, n(A � B) = 47 then
n(A ∪∪∪∪∪ B) equals
(A) 373 (B) 165
(C) 370 (D) none of these

2. Let  A = { (x, ex�1) : x ∈∈∈∈∈ |R }  and  B = { (x, [x]) : x ∈∈∈∈∈ |R }  where [ · ] denotes the greatest integer value
function. The number of points in A ∩∩∩∩∩ B is
(A) 0 (B) 1
(C) 2 (D) infinite

3. Let  A = { 1, 2, 3, 4, 5 } and let A1 = {1}, A2 = {2, 3}, A3 = {4, 5}. For x, y ∈∈∈∈∈ A write x R y iff x, y belong
to Ai for some i = 1, 2, 3. Which of the followings is true ?
(A) R is reflexive and symmetric but not transitive
(B) R is reflexive and transitive but not symmetric
(C) R is symmetric and transitive but not reflexive
(D) R is an equivalence relation

4. The domain of definition of the function

36x
1  

5x
1x log   f(x) 20·4

−
×








+

−
=  is

(A) (– ∞, 0) \ {– 6} (B) (0, ∞) \ {1,  6}
(C) (1, ∞) \ { 6} (D) [1, ∞) \ {6}

5. Which of the followings is true ?
(A) sin 1º = sin 1 (B) sin 1º > sin 1

(C) sin 1º < sin 1 (D) none of these

6. 2x sin 12 4x  sin 5 6x  sin
x sin 12 3x  sin 17 5x  sin 6 7x  sin

++
+++

 is equal to

(A) cos x (B) 2 cos x
(C) sin x (D) 2 sin x

7. If exp {(sin2x + sin4x + sin6x + ......) log 3} satisfies the equation x2 � 28x + 27 = 0,  0 < x < , then

(A) x = 6
π

(B) x = 

(C) x = (D) none of these
8. Let P(n) denote the statement �n2 � n + 41 is a prime�. Which of the followings is not true ?

(A) P(1) is a prime (B) P(2) is a prime
(C) P(n)  /⇒  P(n + 1) for some n (D) P(n) is a prime  ∨   n ∈ N|
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9. The least positive argument of the complex numbers among | Z � 5i | ≤≤≤≤≤ 3  is

(A)

5
1 sin 1−

(B) 5
2 sin 1−

(C) 5
3 sin 1− (D) 5

4 sin 1−

10. If n > 3, the roots of Zn = (Z + 1)n  in  C|   lie on a
(A) straight line (B) Circle
(C) ellipse (D) none of these

11. If Z1 and Z2 are two complex numbers such that
| Z1 | = | Z2 | + | Z1 � Z2 |,  then

(A) Arg Z1 = Arg Z2 (B) Arg Z1 > Arg Z2
(C) Arg Z1 < Arg Z2 (D) None of these

12. If n is a positive integer then

2n2

n

x  ......  x x   1 
x   0 x 

Max
++++>  equals

(A) 1n2
1
+

(B)

n2
1

(C) 1n2
1
−

(D) 1

13. The number of solutions (x, y); x, y ∈∈∈∈∈ N| to
1 ! + 2 ! + 3 ! + ...... + x ! = y3  are

(A) 0 (B) 1
(C) 2 (D) infinite

14. The last three digits of 3100 are
(A) 111 (B) 011
(C) 101 (D) 001

15. The smallest integer greater than or equal to 

61)2( +

 is

(A) 196 (B) 197
(C) 198 (D) 199

16. If log 2,  log (2x � 1)  and  log (2x + 3)  are in AP then x equals
(A) 5/2 (B) log25
(C) log32 (D) 3/2

17. The real solutions of the equation
x2 � | 2x � 3 | � 3x + 3 = 0  form

(A) an AP (B) a GP
(C) an HP (D) a set of numbers with sum zero
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18. The number of GP�s containing 22, 333, 4444 as terms in each is
(A) 0 (B) 1
(C) 2 (D) infinite

19. If the points (2a, a), (a, 2a) and (a, a) enclose a triangle of area 18 sq. units then a possible centroid is
(A) (2, 2) (B) (4, 4)
(C) (6, 6) (D) (8, 8)

20. A triangle with integral vertices (both co-ordinates integers) can not
(A) be a right angled (B) be isosceles
(C) be equilateral (D) have its area to be a non-integer

21. Let P ↔↔↔↔↔ (2, 3), Q ↔↔↔↔↔ (3, 2). The length of the common chord of two circles, described on OP and OQ
as diameters equals
(A) 1 (B) 2
(C) 3 (D) none of these

22. Eccentricity of the conic  x2 � y2 = �1  is
(A) 1 (B) 2/1
(C) 2 (D) none of these

23. Perpendicular distance of the point (x, y, z) from x-axis is

(A) 22 yx + (B) 22 zy +

(C) 22 xz + (D)

24. A function f(x) with domain |R satisfies
| f(x) � f(y) | ≤≤≤≤≤  ex�y · | x � y |2   ∨∨∨∨∨    x, y ∈∈∈∈∈ |R.

If f(0) = 0 then
(A) f(1) ≠ 0 (B) f(2) = 2
(C) f(3) = e3 (D) none of these

25. If  f(x) satisfies  π 
1x
2f(x)  1x

Lim
2 =

−

−
→  the f(x)  1x

Lim
→  equals

(A) 0 (B) 1
(C) 2 (D) 2π

26. For arbitrary statements p and q, the statement
� ( p ∨∨∨∨∨  q) ∨∨∨∨∨   (� p ∧∧∧∧∧ q)  is

(A) a tautology (B) a fallacy
(C) ≡ – p (D) ≡ – q

27. Variance of a number of observations is 10. If each observation is multiplied by 2 and then added by
3, the variance of new observations will be
(A) 20 (B) 23
(C) 40 (D) 43
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28. If a variable takes the values 0, 1, 2, ......, n with respective frequencies being

n
n

1
n

0
n c , ...... , c , c  

then the mean of the distribution is

(A) 2
n

(B) 2
)1n(n +

(C)

2
)1n(n −

(D) none of these

29. One function is selected from all the functions
F : S → → → → → S, where S = {1, 2, 3, 4, 5, 6}.

The probability that it is an onto function is
(A) 5/324 (B) 7/324
(C) 5/162 (D) 5/81

30. In a random arrangement of letters of the word INSTITUTION, the probability that the three T�s
are together is
(A) 1/55 (B) 2/55
(C) 3/55 (D) 4/55

31. If  

∑
=

− =
10

1  i
i

1 0x cos 

  then  ∑
=

10

1  i
ix   is

(A) 0 (B) 10
(C) 5 (D) –5

32. The set of values of x for which xsin  
x1

x tan 1
2

1 −− =
−

 holds

(A) |R (B) [–1, 1]
(C) [0, 1] (D) [–1, 0]

33. The value of 

















+







 −−  
13
2sin  

5
4 cos  tan 11

  is

(A) 16
7

(B) 6
17

(C) 17
6

(D) 7
16

34. If ,   
100
0x cosx sin
0x sin x cos

   f(x)














 −

=  then f(x + y) is equal to

(A) f(x) + f(y) (B) f(x) – f(y)
(C) f(x) + 2f(y) (D) f(x) f(y)
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35. If    
031
021
11 1

   A














 −

=   then the value of  | adj A |  is equal to

(A) 5 (B) 0
(C) 1 (D) 32

36. Let 







=



















−

=  
10
11

      A,   

2
3

2
1

2
1  

2
3

   P   and Q = PAPT.  If X = PT Q2011 P  then X is equal to

(A) 







 

10
20111

 (B) 








−

+  
32011 42033

203332011  4 

(C) 








−−

+  
321

13 2   
4
1 (D) 









+

−  
201132

320112   
4
1 

37. If the system of equations x + ay + az = 0,  bx + y + bz = 0,  cx + cy + z = 0,  (a, b, c non zero and non
unity)  has a non-trivial solution then the value of

c1
c  

b1
b  

a1
a

−
+

−
+

−
 is

(A) 1 (B) 0

(C) –1 (D)

38. The determinant 

(A) x, y, z are in A.P. (B) x, y, z in G.P.
(C) x, y, z are non-zero (D) xy, yz, zx  are in A.P.

39. For ( ) ,  dI  cA  A 
6
1     Aif  ,  

420
110
001

   A 21





 ++=

















−

= −  then the values of c and d are

(A) (–6, –11) (B) (6, 11)
(C) (–6, 11) (D) (6, –11)

40. If y = (1 + x) (1 + x2) ... (1 + x2n
)  then  dx

dy
 at x = 0 is

(A) 1 (B) –1
(C) 0 (D) 2n
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41. The derivative of 








−
−

2
1

x1
2x tan  with respect to 









−
−

2
1

x1
2x sin  is

(A) 2x1
1

+
(B)

2x1
1

−

(C) 0 (D) 1

42. If f is differentiable at x = 1,  then

1x
f(x) xf(1)  limit

1x −

−
→

 is equal to

(A) f'(1) (B) 0
(C) f(1) – f'(1) (D) f(1) + f'(1)

43. The function [x]2 � [x2],  where [y] is the greatest integer less than or equal to y is discontinuous at
(A) all integers (B) all integers except 0 and 1
(C) all integers except 0 (D) all integers except 1

44. Which one of the following functions is bijective
(A) f : Z/ → Z/  ,   x → 3x (B) f : Z/ → Z/  ,   x → 5 – x

(C) f : Z/ → Z/  ,   x → x – | x | + | x + 1 | (D) f : Z/ → Z/  ,   x → 
2
1  x(x + 1)

45. The equation of a curve is given by x = et sin t,  y = et cos t the inclination of the tangent to the curve

at the point 
4
π t =  is

(A) 4
π

(B)3
π

(C)

2
π

(D) 0

46. Let f(x) = x3 + 3x2 � 9x + 2  then
(A) f(x) has a maximum at x = 1
(B) f(x) has neither maximum nor minimum at x = –3
(C) f(x) has a minimum at x = 1
(D) f(x) has a minimum at x = –3

47. Let x be a real number which exceeds its square by the greatest possible quantity. Then x is equal to

(A)

2
1

(B) 4
1

(C) 4
3

(D) 8
1
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48. If ∫=
x

0

dtt  sint     f(x) , then f"(x)  is

(A) x sin x (B) sin x + x cos x
(C) cos x + x sin x (D) 0

49. If ,5k dx   
x

5 1/x
2

1/x
 =∫  then the value of k is

(A) log 5 (B) – log 5

(C) 5 log
1

− (D) 5 log
1

50. The area of the region bounded by the curves y = | x � 3 |, x = 2, x = 4 and the x-axis is
(A) 4 square units (B) 2 square units
(C) 1 square unit (D) 3 square units

51. 1k

kkk

 n n
(2n)  ......42  limit

+∞→
+++

, k ≠≠≠≠≠ �1, is equal to

(A) 2k (B)
1k

2k

+

(C) (D)

52. If  y(t)  is the solution of  , y(0) = �1, then y(1) is equal to

(A) 2
1

− (B) 2
1e +

(C) 2
1e − (D) 2

1

53. The differential equation 
y

y1
 

dx
dy 2−

=  determines a family of circles with

(A) Variable radii and a fixed centre at (0, 1)
(B) Variable radii and a fixed centre at (0, –1)
(C) fixed radius 1 and variable centre along the x-axis
(D) fixed radius 1 and variable centre along the y-axis
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54. The value of l for which the straight lines

2
7z

4
1y3x  and  

4
1z

3
y

2
2x −

=
−

=
−−

=
−

=
+

l  interesect is

(A) 1 (B) 2
(C) 3 (D) 5

55. The foot of the prependicular from (0, 2, 3) to the line 3
4z

2
1y

5
3x +

=
−

=
+

 is

(A) (–2, 3, 4) (B) (2, –1, 3)
(C) (2, 3, –1) (D) (3, 2, –1)

56. If the vectors 

b  , ar

 are not perpendicular to each other and if 

0  a · r  , b  c  b  r =×=×
rrrrrr

 then

(A)

a  c  r rrr
×=

(B)

b  c c  a  r
rrrrr

×−×=

(C)

b  
a · b
a · c c  r

r
rr

rr
rr








−=

(D) b  
a · b
a · c c  r

r
rr

rr
rr

×=

57. If , 7   c    , 5   b    3,   a    0,   c    b    a ====++
rrrrrr  then the angle between  

is  b  and  a
rr

(A)

6
π

(B)

3
π (C)
3

2π (D)
6

5π

58. The maximum value of P = 40x + 50y subject to the constraints 3x + y ≤≤≤≤≤ 9,  x + 2y ≤≤≤≤≤ 8,  x ≥≥≥≥≥ 0,  y ≥≥≥≥≥ 0  is
(A) 120 (B) 230
(C) 200 (D) 210

59. The weighted arithmetic mean of the first n natural numbers whose weights are equal to the
corresponding numbers is given by

(A)

1)(n 
2
1

+

(B) 1)(2n 
2
1

+

(C) 1)(2n 
3
1

+ (D) 1)(2n 
6
1

+

60. Three persons A, B, C are to speak at a function along with 7 other speakers in a random order. The
probability that A speaks before B and B speaks before C at the function is

(A) 16
3

(B) 6
1

(C) 7
3

(D) 3
1
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