CHEMICAL SCIENCES

This Test Booklet will contain 145 (20 Part `A' +50 Part `B+75 Part 'C') Multiple Choice Questions (MCQs). Candidates will be required to answer 15 in part ' A ', 35 in Part 'B' and 25 questions in Parts C respectively (No. of question to attempt may vary from exam to exam). In case any candidate answers more than 15,35 and 25 questions in Parts A, B and C respectively only first 15, 35 and 25 questions in Parts A, B and C respectively will be evaluated. Questions in Parts 'A' and 'B' carry two marks each and Part 'C' questions carry four marks each. There will be negative marking @ 25% for each wrong answer. Below each question, four alternatives or responses are given. Only one of these alternatives is the 'CORRECT' answer to the question.

MODEL QUESTION PAPER

PART A

May be viewed under heading "General Science"

PART B

21. $\left[\mathrm{CoCl}_{4}\right]^{2-}$ shows a deep blue colour because of
22. metal to ligand charge transfer transition
23. ligand to metal charge transfer transition
24. spin allowed and Laporte forbidden d-d transition
25. spin allowed and Laporte allowed d-d transition
26. The violet colour of iodine vapour is due to
27. $\mathrm{n}-\pi^{*}$ transition
28. $\pi-\pi^{*}$ transition
29. $n-\sigma^{*}$ transition
30. $\pi^{*}-\sigma^{*}$ transition
31. Choose the correct statement among the following
32. diamond has lower thermal and electrical conductivities compared to graphite
33. diamond has similar thermal and electrical conductivities compared to graphite
34. diamond has higher thermal conductivity but lower electrical conductivity compared to graphite
35. diamond has the same thermal but lower electrical conductivity compared to graphite
36. Which of the following is a nido-borane?
37. $\mathrm{B}_{4} \mathrm{H}_{10}$
38. $\mathrm{B}_{5} \mathrm{H}_{9}$
39. $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$
40. $\mathrm{B}_{5} \mathrm{H}_{11}$
41. The oxidation number of sulphur in dithionite $\left[\mathrm{S}_{2} \mathrm{O}_{4}\right]^{2-}$ and dithionate $\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]^{2-}$ are, respectively,
42. $\quad+3$ and +4
43. +3 and +5
44. +4 and +5
45. +4 and +6
46. Among the three types of orbitals p, d, and f,
47. both p and f orbitals have centre of symmetry
48. both p and d orbitals have centre of symmetry
49. only d orbitals have centre of symmetry
50. f orbitals alone have centre of symmetry
51. The absorbance of solution having 20% transmittance is
52. 0.301
53. 0.699
54. 1.301
55. 1.699
56. The active site of enzyme nitrogenase contains
57. Mo
58. Mn
59. Fe
60. Cu
61. Which one of the following is a free radical:
62. CO
63. CN^{-}
64. NO
65. CS
66. Choose the $16 \mathrm{e}^{-}$complex from the following:
67. $\mathrm{Ni}(\mathrm{CO})_{4}$
68. $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
69. $\mathrm{Fe}(\mathrm{CO})_{5}$
70. $\quad\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Cr}$
71. The species having metal-metal bond is:
72. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
73. $\quad \mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
74. $\quad \mathrm{V}_{2}(\mathrm{O})_{12}$
75. $\mathrm{Al}_{2}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{12}$
76. Choose the INCORRECT statement from the following
77. Fluorine has higher electronegativity than chlorine
78. Fluorine molecule $\left(\mathrm{F}_{2}\right)$ has lower bond energy than chlorine molecule $\left(\mathrm{Cl}_{2}\right)$
79. Fluorine has higher electron affinity than chlorine
80. Fluorine has a lesser tendency to form cation than chlorine
81. The only molecule having bridging oxygen is
82. Phosphorus trioxide
83. Phosphorus pentaoxide
84. Cyclic tetraphosphate
85. Pyrophosphate
86. The coordination number of phosphorus in $\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right]^{3-}$ is
87. 2
88. 4
89. 5
90. 6
91. Using phenolphthalein as the indicator, which of the following titration is possible:
92. acetic acid with pyridine
93. oxalic acid with sodium hydroxide
94. hydrochloric acid with aniline
95. sulphuric acid with aqueous ammonia
96. Which of the following species is ESR-active?
97. VOSO_{4}
98. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
99. KMnO_{4}
100. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
101. Ozone $\left(\mathrm{O}_{3}\right)$ absorbs UV radiation in the atmosphere and is decomposed mainly into
102. $\mathrm{O}_{2}, \mathrm{O}$
103. $\mathrm{O}^{2-}, \mathrm{O}^{2+}$
104. $\mathrm{O}_{2}^{2-}, \mathrm{O}^{+}$
105. atomic oxygen
106. Large derivation from Trouton's rule is observed for systems which are
107. having more ordered structure
108. having more disordered structure
109. having low melting points
110. having low boiling points
111. The concentration of a reactant decreases linearly with time. What is the order of the reaction?

112. $1^{\text {st }}$ order
113. Fractional order
114. $2^{\text {nd }}$ order
115. Zero order
116. The point group symmetry of the molecule cis $-\mathrm{ML}_{4} \mathrm{X}_{2}$ is
117. $\mathrm{C}_{4 v}$
118. $\mathrm{D}_{4 h}$
119. $\mathrm{C}_{2 h}$
120. $\mathrm{C}_{2 v}$
121. The point group symmetries of a square and a rectangle respectively, are
122. $\mathrm{D}_{4 h}$ and $\mathrm{D}_{2 h}$
123. $\quad \mathrm{C}_{4 h}$ and $\mathrm{C}_{2 h}$
124. $\quad \mathrm{D}_{4 h}$ and $\mathrm{C}_{2 h}$
125. $\quad \mathrm{C}_{4 h}$ and $\mathrm{D}_{2 h}$
126. The number of rotational degrees of freedom of CO_{2} is
127. one
128. two
129. three
130. four
131. The magnitude of the nuclear spin angular momentum of a nuclei is $\sqrt{15} / 2 \hbar$ units. The value of I is
132. $5 / 2$
133. $1 / 2$
134. 1
135. $3 / 2$
136. Identify the molecule whose rotational constant can not be determined by spectroscopic methods.
137. CH_{4}
138. H_{2}
139. CO_{2}
140. HCl
141. Which of the following transitions in the electronic spectrum of a homonuclear diatomic molecule is forbidden
142. $\quad \sum_{u}^{+} \rightarrow \sum_{g}^{+}$
143. $\sum_{g}^{+} \rightarrow \prod_{u}$
144. $\quad \sum_{u}^{+} \rightarrow \prod_{g}$
145. $\quad \sum_{g}^{+} \rightarrow \Delta_{u}$
146. The diffraction pattern of a cubic solid has an intense 110 Bragg reflection, but the 100 and 111 Bragg reflections are absent. The structure of the solid is
147. Body-centered cubic
148. Primitive cubic
149. Face-centered cubic
150. Edge-centered cubic
151. The logarithmic conductivity of a crystalline solid shows a linear variation with inverse temperature ($1 / \mathrm{T}$). The band gap may be obtained from
152. slope of the plot.
153. intercept on the conductivity axis.
154. intercept on the temperature axis.
155. inverse slope
156. The molar masses of monodisperse and polydisperse polymers obey respectively the conditions: $\left(\bar{M}_{n}=\right.$ Number average molecular weight and $\bar{M}_{w}=$ Weight average molecular weight).
157. $\bar{M}_{n}>\bar{M}_{w}$ and $\overline{\mathrm{M}}_{\mathrm{n}}<\bar{M}_{w}$
158. $\bar{M}_{n}=\bar{M}_{w}$ and $\overline{\mathrm{M}}_{\mathrm{n}}<\bar{M}_{w}$
159. $\bar{M}_{n}<\bar{M}_{w}$ and $\overline{\mathrm{M}}_{\mathrm{n}}<\bar{M}_{w}$
160. $\bar{M}_{n}=\bar{M}_{w}$ and $\overline{\mathrm{M}}_{\mathrm{n}}=\bar{M}_{w}$
161. Curding from milk, an enzyme-catalysed reaction, is most efficient around
162. $\quad 0^{\circ} \mathrm{C}$ and $\mathrm{pH} \geq 10$
163. $\quad 0^{\circ} \mathrm{C}$ and $\mathrm{pH} \leq 4$
164. $\quad 0^{\circ} \mathrm{C}$ and $4 \leq \mathrm{pH} \leq 10$
165. $\quad 25^{\circ} \mathrm{C}$ and $4 \leq \mathrm{pH} \leq 10$
166. The spatial part of hydrogen molecular wavefunction in the simplest molecular orbital theory is given by σ_{g}^{2} where σ_{g} is normalized linear combination of two hydrogen 1s orbitals. Which of the following is true about the above wavefunction?
167. It contains only covalent terms.
168. It includes only a small amount of ionic terms.
169. It contains only ionic terms.
170. It overestimates the ionic terms.
171. $A 2 p_{z}$ orbital of hydrogen atom is an eigenfunction of
172. H only.
173. H and L^{2} only
174. H, L^{2} and L_{z} only
175. H, L^{2}, L_{z} and L_{x}
176. By a reversible process, we mean one that always
177. takes infinite time for completion
178. \quad satisfies $\Delta \mathrm{S}$ (universe) $=0$
179. satisfies $\Delta \mathrm{G}=0$.
180. gives maximum work
181. A hydrogenic 3 p orbital has the following form of the radial wavefunction $\left(\alpha_{i}=\right.$ constant):
182. $r\left(\alpha_{1}-r\right) e^{-\alpha_{2} r}$
183. $r^{2} e^{-\alpha_{3} r}$
184. $r\left(\alpha_{4}-r\right)\left(\alpha_{5}-r\right) e^{-\alpha_{6} r}$
185. $r^{3} e^{-\alpha_{7} r}$
186. The wavefunction $\sin ^{-1} \mathrm{x}$ is not acceptable because it is
187. not continuous
188. not differentiable
189. not an eigenfunction of kinetic energy operator
190. not a single-valued function
191. IUPAC name for the compound given below is

192. E-5-ethylhept-5-en-2-one
193. Z-5-ethylhept-5-en-2-one
194. E-3-ethylhept-2-en-6-one
195. Z-3-ethylhept-2-en-6-one
196. The most suitable reagent for the following transformation is

197. NaBH_{4}
198. $\quad \mathrm{B}_{2} \mathrm{H}_{6}$
199. $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
200. $\mathrm{NH}_{2} \mathrm{NH}_{2} / \mathrm{HCl}$
201. Acetophenone can be converted to phenol by reaction with
202. m-CPBA followed by base catalysed hydrolysis
203. conc. HNO_{3}
204. iodine and NaOH
205. singlet oxygen followed by base catalysed hydrolysis
206. Reaction of phenyl benzoate with an excess of methylmagnesium bromide gives a mixture of
207. triphenylmethanol and phenol
208. 2-phenylpropan-2-ol and phenol
209. acetophenone and toluene
210. 2-phenylbenzoic acid and toluene
211. The major product formed in the reaction of 2-methylbut-3-en-2-ol with HBr is
212.

2.

3.

4.

60. Among dimethylcyclobutanes, which one can exhibit optical activity?

1. cis-1,2-dimethylcyclobutane
2. trans-1,2-dimethylcyclobutane
3. cis-1,3-dimethylcyclobutane
4. trans-1,3-dimethylcyclobutane
5. The monomer of biopolymer DNA is a
6. nucleotide
7. amino acid
8. disaccharide
9. fatty acid
10. The order of chemical shifts (δ value) in the ${ }^{1} \mathrm{H}$ NMR spectrum of crotonaldehyde is
11. olefinic $>\mathrm{CHO}>\mathrm{Me}$
12. $\mathrm{CHO}>\mathrm{Me}>$ olefinic
13. $\mathrm{CHO}>$ olefinic $>\mathrm{Me}$
14. olefinic $>\mathrm{Me}>\mathrm{CHO}$
15. Natural sugars and aminoacids are predominantly
16. D-sugars and L-amino acids
17. D-sugars and D-amino acids
18. L-sugars and D-amino acids
19. L-sugars and L-amino acids
20. The product formed in the reaction given below is
 $\xrightarrow{\mathrm{h} \nu}$
21.

2.

3.

4.

65. The major product formed in the reaction given below is

1.

2.

3.

4.

66. The conversion of excited singlet state $\left(S_{1}\right)$ of a molecule to triplet state $\left(T_{1}\right)$ is known as

1. fluorescence
2. phosphorescence
3. intersystem crossing
4. internal conversion
5. The decreasing order of stability of the free radicals \mathbf{A}, \mathbf{B} and \mathbf{C} is

A

B

C
6. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
7. $\quad \mathrm{C}>\mathrm{A}>\mathrm{B}$
8. $\quad \mathrm{B}>\mathrm{A}>\mathrm{C}$
9. $\quad \mathrm{A}>\mathrm{C}>\mathrm{B}$
10. The major product formed in the reaction given below is

11.

2.

3.

4.

69. The rates of keto-enol tautomerism in the ketones A-C, given below, are in the order

A

B

C

1. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
2. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
3. $\quad \mathrm{C}>\mathrm{A}>\mathrm{B}$
4. $\quad \mathrm{C}>\mathrm{B}>\mathrm{A}$
5. The reaction given below is an example of

6. aldol condensation
7. Knoevenagel condensation
8. Dieckmann condensation
9. acyloin condensation

PART C

71. The covalent radii vary gradually in the Periodic Table. From the orders given below for such radii, the correct ones are
(a) $\mathrm{Ce}>\mathrm{Lu}$, (b) $\mathrm{Co}>\mathrm{Ti}$, (c) $\mathrm{Sr}>\mathrm{Ca}$, (d) $\mathrm{I}>\mathrm{Se}$
72. (a) and (b) only
73. (a) and (c) only
74. (a), (c) and (d) only
75. (b), (c) and (d) only
76. The first ionization energy for the elements $\mathrm{Si}, \mathrm{P}, \mathrm{S}$ and Cl , follows the order
77. $\mathrm{Si}<\mathrm{P}<\mathrm{S}<\mathrm{Cl}$
78. $\mathrm{Si}<\mathrm{S}<\mathrm{P}<\mathrm{Cl}$
79. $\mathrm{S}<\mathrm{Si}<\mathrm{P}<\mathrm{Cl}$
80. $\mathrm{S}<\mathrm{Si}<\mathrm{Cl}<\mathrm{P}$
81. The pair of gaseous molecules/ions having tetrahedral structure is
82. $\mathrm{SnCl}_{4}, \mathrm{PH}_{4}{ }^{+}$
83. $\mathrm{SeCl}_{4}, \mathrm{XeF}_{4}$
84. $\mathrm{ICl}_{4}{ }^{-}, \mathrm{PH}_{4}{ }^{+}$
85. $\mathrm{SnCl}_{4}, \mathrm{ICl}_{4}{ }^{-}$
86. Consider the following

Volumetric method for $\mathbf{A g}(\mathbf{I})$
(a). Fajan method
(b). Mohr's method
(c). Vohlard method

Indicator used

Chromate
Fluorescein
ferric salt

The method and indicator matches correctly in

1. (a) and (b) only
2. (b) and (c) only
3. (c) only
4. (b) only
5. An unknown lead solution has diffusion current of $1.0 \mu \mathrm{~A}$. To a 10 ml of this solution 0.5 ml of 0.04 M lead is added. The diffusion current of the spiked solution is $1.50 \mu \mathrm{~A}$. The concentration of the unknown lead solution is
6. $\quad 0.0020 \mathrm{M}$
7. $\quad 0.0050 \mathrm{M}$
8. $\quad 0.0035 \mathrm{M}$
9. $\quad 0.0010 \mathrm{M}$
10. The ${ }^{32} \mathrm{P}$ radio isotope, used in leukemia therapy, has $\mathrm{t}_{1 / 2}=14.26$ days. What $\%$ of ${ }^{32} \mathrm{P}$ remains after 35 days ?
11. 30%
12. 8%
13. 81.7%
14. 18.3%
15. On a 30 cm column, the t_{R} of \mathbf{A} and \mathbf{B} respectively are 16.40 and 17.63 minutes. The t_{0} of the column is 1.30 minutes. The peak width at base lines for \mathbf{A} and \mathbf{B} are 1.11 and 1.21 minutes respectively. The column resolution R_{S} is
16. 1.06
17. $\quad 1.23$
18. 2.12
19. 2.23
20. Which one of the following pairs of electronic configurations of high-spin transition metal ions (3d) in an octahedral field undergoes a substantial JahnTeller distortion:
21. d^{3}, d^{9}
22. d^{4}, d^{9}
23. d^{5}, d^{9}
24. d^{6}, d^{9}
25. Which one of the following pairs consists of a good oxidizing and a good reducing agent respectively:
26. $\mathrm{Ce}(\mathrm{IV}), \mathrm{Ln}(\mathrm{III})$
27. $\operatorname{Ln}(\mathrm{III}), \mathrm{Eu}(\mathrm{II})$
28. $\mathrm{Ce}(\mathrm{IV}), \mathrm{Eu}(\mathrm{II})$
29. $\quad \operatorname{Ln}($ III $), \mathrm{Ce}($ III $)$
30. Which one of the pairs of following statements about reduction of $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ by $\mathrm{Cr}(\mathrm{II})$ is correct:
(A). Reactant $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ has non-labile coordination sphere
(B). Reaction proceeds by outer-sphere mechanism
(C). Reactant $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ has labile coordination sphere
(D). Reaction proceeds by inner-sphere mechanism
31. (A) and (B)
32. (A) and (D)
33. (C) and (B)
34. (C) and (D)
35. Hemocyanin contains
36. a dinuclear copper core and binds dioxygen in the cuprous state.
37. a dinuclear copper core and binds dioxygen in the cupric state.
38. a mononuclear copper core and binds dioxygen in the cuprous state
39. a mononuclear copper core and binds dioxygen in the cupric state.
40. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{PF}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ at room temperature and low temperature (173 K) respectively shows (assume that N and H do not couple):
41. triplet and quintet
42. quintet and triplet
43. quintet and triplet of triplets
44. triplet and triplet of triplets
45. The number of hyperfine lines in the EPR spectrum of a one electron reduced product of $\left[\mathrm{Co}_{3}(\mathrm{CO}){ }_{9} \mathrm{Se}\right]$ ($\mathrm{I}=7 / 2$ for Co nucleus) is:
46. 8
47. 15
48. 22
49. 1
50. The highest oxidation state of a metal in the following compounds is :
$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Cr}, \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}, \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right], \mathrm{K}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ and $\mathrm{K}\left[\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{Br}\right]$
51. 1
52. 2
53. -1
54. -2
55. The maximum number of valence electrons of a metal in these complexes are:
$\mathrm{Mn}_{2}(\mathrm{CO})_{10},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cl},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ni}$, and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$
56. 16
57. 18
58. 20
59. 22
60. The number of bridging and terminal carbonyls present in $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ at low temperature are respectively:
61. 3 and 9
62. 4 and 8
63. 6 and 6
64. 0 and 12
65. Olefin hydrogenation using Wilkinson's catalyst initiates with:
66. olefin addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
67. olefin addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
68. a phosphine dissociation from $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
69. a phosphine addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
70. Although Fe (III) is a better Lewis acid compared to $\mathrm{Zn}(\mathrm{II})$, most hydrolytic enzymes contain $\mathrm{Zn}(\mathrm{II})$ at the active site because
71. $\mathrm{Fe}(\mathrm{III})$ is a redox active ion.
72. $\quad \mathrm{Fe}(\mathrm{III})$ has less abundance compared to $\mathrm{Zn}(\mathrm{II})$.
73. Fe (III) generally makes octahedral complexes while Zn (II) makes tetrahedral complexes
74. $\quad \mathrm{Zn}(\mathrm{II})$ makes kinetically labile complexes.
75. Considering the two complexes $(\mathrm{A})\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $(\mathrm{B})\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, the right statement is
76. Complex (A) is diamagnetic and complex (B) is paramagnetic
77. Complex (A) is paramagnetic and complex (B) is diamagnetic
78. Both are paramagnetic
79. Both are diamagnetic
80. Unlike d-d transitions, the f-f transitions
81. do not change much with change in ligand
82. change significantly with change in ligand
83. appear at low energies i.e., at the near-IR region
84. appear as broad bands
85. The solvent that will enhance electrical conductivity of $\mathrm{N}_{2} \mathrm{O}_{4}$ considerably is
86. hexane
87. benzene
88. nitromethane
89. carbon tetrachloride
90. The major product obtained by the reaction of PCl_{5} with $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ respectively are
91. $\left(\mathrm{PNCl}_{2}\right)_{\mathrm{n}}, \mathrm{P}\left(\mathrm{NH}_{2}\right)_{4} \mathrm{Cl}$ and $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NPOCl}_{2}$
92. $\quad \mathrm{P}\left(\mathrm{NH}_{2}\right)_{4} \mathrm{Cl},\left(\mathrm{PNCl}_{2}\right)_{\mathrm{n}}$ and $\mathrm{Cl}_{3} \mathrm{P}=\mathrm{NPOCl}_{2}$
93. $\quad \mathrm{Cl}_{3} \mathrm{P}=\mathrm{NPOCl}_{2},\left(\mathrm{PNCl}_{2}\right)_{\mathrm{n}}$ and $\mathrm{P}\left(\mathrm{NH}_{2}\right)_{4} \mathrm{Cl}$
94. $\left(\mathrm{PNCl}_{2}\right)_{\mathrm{n}}$ only
95. Strongest superacid among the following is a
96. solution of HNO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$
97. solution of HClO_{4} in $\mathrm{H}_{2} \mathrm{SO}_{4}$
98. solution of SbF_{5} in HF
99. solution of SbCl_{5} in HCl
100. Consider the following statements regarding borazine,
A. It is isoelectronic with benzene
B. Each nitrogen receives more σ-electron density from neighbouring boron than it gives away as a π-donor
C. It does not undergo addition reactions
D. Nitrogen retains its basicity and boron its acidity.

The true statements among the above are

1. A, C and D
2. A, B and D
3. A and C only
4. B , C, and D
5. Which of the following has linear shape
6. $\mathrm{H}_{3} \mathrm{C}-\mathrm{N}=\mathrm{C}=\mathrm{S}$
7. $\mathrm{H}_{3} \mathrm{Si}-\mathrm{N}=\mathrm{C}=\mathrm{S}$
8. $\mathrm{H}_{3} \mathrm{C}-\mathrm{N}=\mathrm{C}=\mathrm{O}$
9. $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
10. For a diffusion-controlled bimolecular reaction, the rate constant $\left(k_{D}\right)$ is proportional to ($\mathrm{T}=$ temperature; $\eta=$ coefficient of viscosity of medium).
11. $\eta \mathrm{T}$
12. $\frac{1}{\eta T}$
13. $\frac{T}{\sqrt{\eta}}$
14. $\frac{T}{\eta}$
15. Consider the unimolecular reaction
$\mathrm{A}(\mathrm{g}) \rightarrow$ products
for which the following remarks were made.
A. The reaction is second order at low pressure and becomes first order at high pressure.
B. The reaction is first order at low pressure and becomes second order at high pressure.
C. The reaction is zero order

Which of these is correct?

1. A and B
2. B and C
3. Only C
4. only A
5. A random distribution of errors obeys the Gaussian form $\sqrt{A / \pi} \exp \left[-A x^{2}\right]$. The mean and standard deviation of this distribution obeys
6. $\langle x\rangle=0$ and $\sigma_{x}=1 / \sqrt{A}$
7. $\langle x\rangle \neq 0$ and $\sigma_{x}=1 / \sqrt{A}$
8. $<\mathrm{x}>=0$ and $\sigma_{\mathrm{x}}=\sqrt{A}$
9. $<x>=0$ and $\sigma_{x}=A$
10. The function $\sin ^{-1} \mathrm{x}$ is not an acceptable wave function because
11. it is not differentiable
12. its first derivative is not continuous
13. it does not cover the entire space
14. it is not a single-valued function
15. The following is true of $2 p_{x}, 2 p_{y}$ and $2 p_{z}$ orbitals of a H atom.
16. All are eigen functions of L_{z}
17. Only $2 p_{x}$ and $2 p_{z}$ orbitals are eigen functions of L_{z}
18. Only $2 p_{y}$ orbital is an eigen function of L_{z}.
19. Only $2 p_{z}$ orbital is an eigen function of L_{z}.
20. Given two Hermitian operators A and B, we construct the following four additional operators
$\mathrm{AB}, \mathrm{ABA}, i[\mathrm{~A}, \mathrm{~B}], \mathrm{A}^{2} \mathrm{~B}$.
Choose the correct option from below.
21. All these 4 operators are Hermitian
22. Only 3 of these operators are Hermitian
23. Only 2 of these operators are Hermitian
24. Only 1 of these operators is Hermitian
25. The first-order correction to energy for the ground state of a particle-in-a-box due to a perturbation λx would be
26. $\lambda \mathrm{L} / 2$
27. $\lambda \mathrm{L}$
28. $2 \lambda \mathrm{~L}$
29. 2
30. Characters of a few symmetry operations are given below. Identify the character of the irreducible representation $A_{2 g}^{\prime}$

	E	C_{n}	C_{2}	i	σ_{h}
1	1	1	1	-1	-1
2	1	1	-1	1	1
3	1	-1	-1	1	1
4	1	1	-1	-1	1

104. The character of the irreducible representation A_{1} in $C_{3 v}$ point group is given below

$$
\begin{array}{l|l|l|l}
& \mathrm{E} & 2 \mathrm{C}_{3} & 3 \sigma_{\mathrm{v}} \\
\hline \mathrm{~A}_{1} & 1 & 1 & 1
\end{array}
$$

Identify one irreducible representation orthogonal to A_{1} among the following.

	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
Γ_{1}	1	-1	1
Γ_{2}	2	-1	0
Γ_{3}	2	0	-1
Γ_{4}	1	-1	-1

1. Γ_{1}
2. Γ_{2}
3. Γ_{3}
4. Γ_{4}
5. The energy levels of cyclopropene are $\alpha+2 \beta, \alpha-\beta$, and $\alpha-\beta$. The delocalization energy in $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{-}$is
6. 2β
7. 0
8. β
9. 3β
10. The rotational constant (B) of $\mathrm{H}^{35} \mathrm{Cl}, \mathrm{H}^{37} \mathrm{Cl}$ and $\mathrm{D}^{35} \mathrm{Cl}$ follow the order
11. $\quad \mathrm{H}^{35} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}$
12. $\mathrm{H}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}$
13. $\mathrm{D}^{35} \mathrm{Cl}>\mathrm{H}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}$
14. $\quad \mathrm{H}^{37} \mathrm{Cl}>\mathrm{H}^{35} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}$
15. Observe the following statements
I. Atomic mass of isotopes can be obtained from rotational spectra
II. The separation between two successive rotational spectral lines of gaseons NO is $2 \mathrm{~B} \mathrm{~cm}^{-1}$
III. The nmr spectrum of a compound gave a singlet at $300 \mathrm{H}_{\mathrm{z}}$ away from TMS using a nmr spectrometer operating at $60 \mathrm{MH}_{z}$. Its chemical shif is 3 ppm.

Which of the following is correct?

1. I, II and III are correct.
2. Only III is correct.
3. I and II are correct.
4. Only I is correct.
5. In a crystal, atom A is at the corners of the unit cell, B is at the centre of the cell and the oxygen atoms are at the face-centred positions. What is the formula per unit cell?
6. $\mathrm{A}_{8} \mathrm{BO}_{6}$
7. ABO_{6}
8. $\mathrm{A}_{8} \mathrm{BO}_{3}$
9. ABO_{3}
10. On mixing 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 50 mL of 0.1 M NaOH , the pH of the solution will be
11. $\mathrm{pk}_{\mathrm{a}}+0.301$
12. pk_{a}
13. $\mathrm{pk}_{\mathrm{a}}-0.301$
14. $\mathrm{pk}_{\mathrm{a}}+0.477$
15. Using the fundamental equation $\mathrm{dA}=-\mathrm{SdT}-\mathrm{PdV}$, the Maxwell relation is
16. $\left(\frac{\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial S}\right)_{V}$
17. $\left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial P}{\partial T}\right)_{V}$
18. $\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{\partial P}{\partial S}\right)_{T}$
19. $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
20. The relationship between mean ionic activity coefficient for $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and its ions is given by
21. $\quad \gamma_{ \pm}=\gamma_{+}{ }^{3} \gamma_{-}^{2}$
22. $\gamma_{ \pm}=\gamma_{+}{ }^{2} \gamma_{-}{ }^{3}$
23. $\quad \gamma_{ \pm}{ }^{5}=\gamma_{+}{ }^{3} \gamma_{-}{ }^{2}$
24. $\quad \gamma_{ \pm}{ }^{5}=\gamma_{+}{ }^{2} \gamma_{-}^{3}$
25. Assuming that $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{X}$ bond lengths in the molar residual entropy at 0 K is

26. 0
27. $\mathrm{R} \ln 2$
28. $\mathrm{R} \ln 3$
29. $\mathrm{R} \ln 6$
30. The contributions to the molar entropy by translational (tr), rotational (rot), vibrational (vib) and electronic (ele) degrees of freedom is in order
31. \quad tr $>$ rot $>v i b>$ ele
32. \quad rot $>v \mathrm{vib}>\operatorname{tr}>$ ele
33. ele $>\mathrm{vib}>$ rot $>$ tr
34. \quad vib $>$ rot $>\operatorname{tr}>$ ele
35. A binary mixture of A_{2} and B_{2} will show negative deviation from Raoult's law when
36. $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interactions are stronger than $\mathrm{A}-\mathrm{B}$
37. $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interactions are weaker than $\mathrm{A}-\mathrm{B}$
38. Both $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interactions are equal to $\mathrm{A}-\mathrm{B}$
39. Either $\mathrm{A}-\mathrm{A}$ or $\mathrm{B}-\mathrm{B}$ interactions is equal to $\mathrm{A}-\mathrm{B}$
40. In the presence of external magnetic field the transition ${ }^{3} D_{1} \rightarrow{ }^{3} P_{1}$ splits into
41. 3
42. 5
43. 7
44. 9
45. The term symbol for the ground state of rhodium (Rh, atomic number 45) is ${ }^{4} F$. The electronic configuration for this term symbol is
46. $[\mathrm{Kr}] 4 d^{7} 5 s^{2}$
47. $\quad[\mathrm{Kr}] 4 d^{8} 5 s^{1}$
48. $\quad[\mathrm{Kr}] 4 d^{9} 5 s^{0}$
49. $\quad[\mathrm{Kr}] 4 d^{7} 5 s^{1} 5 p^{1}$
50. Ionic equivalent conductance value for Ca^{2+} is $0.0119\left(\mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\right)$ and for Cl^{-}is $0.0076\left(\mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\right)$. The correct expected molar conductivity at infinite dilution for CaCl_{2} is
51. $\quad 0.0195 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
52. $\quad 0.0271 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
53. $\quad 0.0542 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
54. $\quad 0.01355 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
55. Find correct pair for ionic strengths of (a) a 0.02 molal solution of KCl and a 0.02 molal solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$.
56. (a) $0.020 \mathrm{~mol} \mathrm{Kg}^{-1}$ (b) $0.020 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$
57. (a) $0.020 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$ (b) $0.060 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$
58. (a) $0.020 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$ (b) $0.050 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$
59. (a) $0.020 \mathrm{~mol} \mathrm{Kg}^{-1}$ (b) $0.030 \mathrm{~mol} \mathrm{Kg}{ }^{-1}$
60. The term symbol for the ground state configuration of NO is
61. ${ }^{2} \Pi_{u}$
62. ${ }^{2} \Pi_{g}$
63. ${ }^{1} \Pi_{u}$
64. ${ }^{1} \Pi_{g}$
65. The kinetic chain length (v) is a measure of chain propagation. If the rates of consumption are denoted by R_{c} and rates of production by $R_{p} ; M$ and M^{*} denote the monomer and the active center, respectively. The correct definition of v is
66. $\quad R_{c}(M) / R_{p}\left(M^{\bullet}\right)$
67. $\quad R_{p}\left(M^{\bullet}\right) / R_{c}(M)$
68. $R_{c}\left(M^{*}\right) / R_{p}(M)$
69. $\quad \mathrm{R}_{\mathrm{c}}(\mathrm{M}) / \mathrm{R}_{\mathrm{c}}\left(\mathrm{M}^{\bullet}\right)$
70. Amongst the following the correct statement for the compounds \mathbf{A}, \mathbf{B}, and \mathbf{C}, is

A

B

c

1. $\quad \mathbf{A}$ and \mathbf{B} are achiral and \mathbf{C} is chiral
2. $\quad \mathbf{A}$ is chiral and \mathbf{B} and \mathbf{C} are achiral
3. $\quad \mathbf{A}$ and \mathbf{B} are chiral and \mathbf{C} is achiral
4. $\quad \mathbf{A}$ is achiral and \mathbf{B} and \mathbf{C} are chiral
5. 4-tert-Butylcyclohexanone on reduction gives two isomeric alcohols which are
6. Enantiomers
7. Diasteromers
8. Rotamers
9. Homomers
10. For the following compounds \mathbf{A} and \mathbf{B} the correct statement is
11. \mathbf{A} is aromatic and \mathbf{B} is antiaromatic
12. \mathbf{A} is antiaromatic and B is non-aromatic
13. \mathbf{A} and \mathbf{B} are both aromatic
14. A and B are both non-aromatic
15. Identify the product formed in the following transformations
16. Identify the product formed in the following sequence of reactions
17. Identify the products \mathbf{A} and \mathbf{B} in the following reaction sequence
18. Match the following:
A. Conversion of 1,7-octadiene to cyclohexene
i) Wacker Oxidation
B. Conversion of bromobenzene to ethyl cinnamate
ii) McMurry Coupling
C. Conversion of 1-hexene to 2-hexanone
iii) Heck reaction
iv) Olefin Metathesis

1, A: iv; B: ii; C: iii
2. A: ii; B: iv; C: i
3. A: iv; B: iii; C: i
4. A: i; B: iii; C: iv
128. Reagents that can be used in the following conversion are

1. i) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, ii) HCN , iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
2. i) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}$, ii) $\mathrm{n}-\mathrm{BuLi}$, iii) $\mathrm{BrCH}_{2} \mathrm{COOH}$
3. i) EtMgI , ii) KMnO_{4}
4. i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}$, ii) $n-\mathrm{BuLi}$, iii) CO_{2}
5. The major product formed in the following reaction is

6.

2.

3.

4.

130. In the following reaction, the structure of the major product is

131. For the following reaction, the structure of the major product is
132. Identify the products \mathbf{A} and \mathbf{B} in the following reaction sequence.

1. \mathbf{A} is

B is

2. \mathbf{A} is

B is

3.

B is

4. \mathbf{A} is

B is

133. Major product formed in the following reaction is

134. In the following reaction sequence the structure of the major products \mathbf{X} and \mathbf{Y} are

135. Product of Sharpless kinetic resolution of the following alcohol with (-)-diethyl tartrate is
1.

2.

3.

136. Select the product of the reaction of (Z)-(2-methoxyvinyl)benzene with dichloroacetyl chloride in presence of triethyl amine.
137. Identify the product formed in the following reaction

1.

2.

3.

4.

138. The compound formed in the following reaction sequence is

1.

2.

3.

4.

139. Cholestanol on oxidation with chromium trioxide in acetic acid/pyridine gives a dicarboxylic acid, which on pyrolysis in the presence of a catalytic amount of barium hydroxide gives compound \mathbf{A} as the major product. The structure of \mathbf{A} is
1.

2.

3.

140. Photolysis of 1,4-dimethyl-1,3-cyclohexadiene in presence of excess oxygen and catalytic amount of Rose Bengal followed by reduction with $\mathrm{H}_{2} / \mathrm{Pt}$ provides
1.

2.

3.

4.

141. In the following reaction sequence, the correct structures of the major products \mathbf{X} and \mathbf{Y} are

1. \mathbf{X} is

2. \mathbf{X} is
 and \mathbf{Y} is

3.

X is

4. X is

142. Structure of the \mathbf{X} and \mathbf{Y} in the reaction sequence of thiophene given below are

1. \mathbf{X} is Br and \mathbf{Y} is

2.

3.

4.

143. Identify the product of hydrogenation $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ of the protected amino acid given below

144. In the broad band decoupled ${ }^{13} \mathrm{C}$ NMR spectrum, the number of signals appear for (a) catechol, (b) resorcinol and (c) hydroquinone, respectively, are

1. six, four and two
2. six, six and four
3. three, four and four
4. three, four and two
5. In the proton NMR spectrum, an organic compound exhibited the following spectral data
$\delta 7.2(1 \mathrm{H}, \mathrm{dd}, J=8$ and 1.5 Hz$), 6.8(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.7(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $4.9(2 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.5\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$

The compound among the choices given below is
1.

2.

3.

4.

